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Abstract
The great dream of a physicist believing in reductionism and TGD

would be a formalism generalizing Feynman diagrams allowing any
graduate student to compute the predictions of the theory. TGD has
forced myself to give up naive reductionism but I believe that TGD
allows generalization of Feynman diagram in such a manner that one
gets rid of the infinities plaguing practically all existing theories. The
purpose of this chapter is to develop general vision about how this
might be achieved. The vision is based on generalization of mathemat-
ical structures discovered in the construction of topological quantum
field theories (TQFT), conformal field theories (CQFT). In particular,
the notions of Hopf algebras and quantum groups, and categories are
central. The following gives a very concise summary of the basic ideas.

1. Feynman diagrams as generalized braid diagrams
The first key idea is that generalized Feynman diagrams with di-

agrams which are analogous to knot and link diagrams in the sense
that diagrams involving loops are equivalent with tree diagrams. This
would be a generalization of duality symmetry of string models.

TGD itself provides general arguments supporting same idea. The
identification of absolute minimum of Kähler action as a four-dimensional
Feynman diagram characterizing particle reaction means that there is
only single Feynman diagram instead of functional integral over 4-
surfaces: this diagram is expected to be minimal one. S-matrix ele-
ment as a representation of a path defining continuation of configu-
ration space spinor field between different sectors of it corresponding
different 3-topologies leads also to the conclusion that all continua-
tions and corresponding Feynman diagrams are equivalent. Universe
as a compute metaphor idea allowing quite concrete realization by gen-
eralization of what is meant by space-time point leads to the view that
generalized Feynman diagrams characterize equivalent computations.

2. Coupling constant evolution from infinite number of critical val-
ues of Kähler coupling strength

The basic objection that this vision does not allow to understand
coupling constant evolution involving loops in an essential manner can
be circumvented. Quantum criticality requires that Kähler coupling
constant αK is analogous to critical temperature (so that the loops for
configuration space integration vanish). The hypothesis motivated by
the enormous vacuum degeneracy of Kähler action is that αK has an
infinite number of possible values labelled by p-adic length scales and
also probably also by the dimensions of effective tensor factors defined
hierarchy of II1 factors (so called Beraha numbers) as found already
earlier. The dependence on p-adic length scale Lp corresponds to the
usual renormalization group evolution whereas the latter dependence
would correspond to angular resolution and finite-dimensional exten-
sions of p-adic number fields Rp. Finite finite resolution and renor-
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malization group evolution are forced by the algebraic continuation of
rational number based physics to real and p-adic number fields since
p-adic and real notions of distance between rational points differ dra-
matically.

3. R-matrices, complex numbers, quaternions, and octonions
A crucial observation is that physically equivalent R-matrices of

6-vertex models are labelled by points of CP2 whereas maximal space
of commuting R-matrices are labelled by points of 2-sphere S2. CP2

also labels maximal associative and thus quaternionic subspaces of 8-
dimensional octonion space whereas S2 labels the maximally commu-
tative subspaces of quaternion space, which suggests that R-matrices
and these structures correspond to each other.

Number theoretic vision leads to a number theoretic variant of
spontaneous compactification meaning that space-time surfaces could
be regarded either as hyper-quaternionic, and thus maximal associa-
tive, 4-surfaces in M8 regarded as the space of hyper-octonions or as
surfaces in M4×CP2 (the imaginary units of hyper-octonions are mul-
tiplied with

√−1 so that the number theoretical norm has Minkowski
signature). Associativity constraint is an essential element of also
Yang-Baxter equations.

These observations lead to a concrete proposal how how quantum
classical correspondence is realized classically at space-time level. Each
point of CP2 corresponds to R-matrix and 3-surfaces can be identified
as preferred sections of space-time surface by requiring that unitary
R-matrices are commuting in the section (micro-causality) whereas
commutativity fails for R-matrices corresponding to different values
of time coordinate defined by this foliation.

4. Ordinary conformal symmetries act on the space of super-canonical
conformal weights

TGD predicts two kinds of super-conformal symmetries.
a) Quaternion conformal symmetries define super Kac-Moody rep-

resentations and are realized at light-like 3-surfaces appearing as bound-
aries of space-time sheets and boundaries between space-time regions
with Euclidian and Minkowskian signature of metric. Conformal weights
are half integer valued in this case.

b) Super-canonical conformal invariance acts at the level of imbed-
ding space and corresponds to light-like 7-surfaces of form X3

l ×CP2 ⊂
M4 ×CP2 believed to appear as causal determinants too. In this case
conformal weights are complex numbers of form ∆ = n/2 + iy and for
physical states they are expected to reduce to the form ∆ = 1/2 + iy.

Quantum classical correspondence suggests that the complex con-
formal weights of super-canonical algebra generators have space-time
counterparts. The proposal is that the weights are mapped to the
points of geodesic sphere of CP2 (and thus also of space-time surface)
labelling also mutually commutating R-matrices. The map is com-
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pletely analogous to the map of momenta of quantum particles to the
points of celestial sphere. One can thus regard super-generators as
conformal fields in space-time or complex plane in which conformal
weights appear as punctures. The action of super-conformal algebra
and braid group on these points realizing monodromies of conformal
field theories induces by a pull-back a braid group action on the confor-
mal labels of configuration space gamma matrices (super generators)
and corresponding isometry generators.

The gamma matrices and isometry generators spanning the super-
canonical algebra can be regarded as fields of a conformal field theory
in the complex plane containing infinite number of punctures defined
by the complex conformal weights. Quaternion conformal Kac Moody
and Super Virasoro algebras act as symmetries of this theory and S-
matrix of TGD should involve the n-point functions of this conformal
field theory.

This picture also justifies the earlier proposal that configuration
space Clifford algebra defined by the gamma matrices acting as super
generators defines an infinite-dimensional von Neumann algebra pos-
sessing hierarchies of type II1 factors having a close connection with
non-trivial representations of braid group and quantum groups. The
zeros of Riemann Zeta along the line Re(s) = 1/2 in the plane of
conformal weights could be regarded a the infinite braid behind the
von Neumann algebra. Contrary to the expectations, also trivial zeros
seem to be important. Super-canonical algebra predicts that also the
superposition for the imaginary parts of non-trivial zeros makes sense
so that one would have an entire hierarchy of one-dimensional lattices
depending on the number of non-trivial zeros included. The braids
defined by sub-lattices defined by subsets of non-trivial zeros could be
seen as completely integrable 1-dimensional spin chains leading to a
hierarchy of quantum groups and braiding matrices naturally.

It seems that not only Riemann’s zeta but also polyzetas could play
a fundamental role in TGD Universe. The super-canonical conformal
weights of interacting particles, in particular of those forming bound
states, are expected to have ”off mass shell” values. An attractive
hypothesis is that they correspond to the zeros of Riemann’s polyzetas.
Interaction would allow quite concretely the realization of braiding
operations dynamically.

5. Equivalence of loop diagrams with tree diagrams from the axioms
of generalized ribbon category

The fourth idea is that Hopf algebra related structures and ap-
propriately generalized ribbon categories could provide a concrete re-
alization of this picture. Generalized Feynman diagrams which are
identified as braid diagrams with strands running in both directions of
time and containing besides braid operations also boxes representing
algebra morphisms with more than one incoming and outgoing strands
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describing particle reactions (3-particle vertex should be enough). In
particular, fusion of 2-particles and decay of particle to two would
correspond to generalizations of algebra product µ and co-product ∆
to morphisms of the category defined by the super-canonical algebras
associated with 3-surfaces with various topologies and conformal struc-
tures. The basic axioms for this structure generalizing Hopf algebra
axioms state that diagrams with self energy loops, vertex corrections,
and box diagrams are equivalent with tree diagrams.

6. Quantum criticality and renormalization group invariance
Quantum criticality means that renormalization group acts like

isometry group at a fixed point rather than acting like a gauge symme-
try as in the standard quantum field theory context. Despite this dif-
ference it is possible to understand how Feynman graph expansion with
vanishing loop corrections relates to generalized Feynman graphs and a
nice connection with the Hopf- and Lie algebra structures assigned by
Connes and Kreimer to Feynman graphs emerges. The condition that
loop diagrams are equivalent with tree diagrams gives explicit equa-
tions which might fix completely also the p-adic length scale evolution
of vertices. Quantum criticality in principle fixes completely the val-
ues of the masses and coupling constants as a function of p-adic length
scale.

7. The spectrum of zeros of Zeta and quantum TGD
The question whether the imaginary parts of the Riemann Zeta

are linearly independent (as assumed in the previous work) or not
is of crucial physical significance. Linear independence implies that
the spectrum of the super-canonical weights is essentially an infinite-
dimensional lattice. Otherwise a more complex structure results.

The hypothesis that piy is an algebraic phase for every prime implies
that piy is expressible as a product of a Pythagorean phase and a root
of unity for every prime p. The numerical evidence supporting the
translational invariance of the correlations for the spectrum of zeros
together with p-adic considerations leads to the working hypothesis
that for any prime p one can express the spectrum of zeros as the
product of a subset of Pythagorean prime phases and of a fixed subset
U of roots of unity. The spectrum of zeros could be expressed as a
union over the translates of the same basic spectrum defined by the
roots of unity: this is consistent with what the spectral correlations
strongly suggest. That decompositions defined by different primes p
yield the same spectrum would mean a powerful number theoretical
symmetry realizing p-adicities at the level of the spectrum of Zeta.

The model for the scalar propagator as a partition function for the
super-canonical algebra supports this view. The approximation that
the zeros are linearly independent implies for any subalgebra defined by
a finite set of zeros a universal spectrum of singularities for real values
of mass squared, and at the limit of entire algebra the propagator is
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not mathematically defined since the singularities are dense in real
axis. Linear independence however shifts the poles to complex values
of mass and genuine resonances result and the propagator is expected
to be well-defined for the entire algebra. The theory predicts universal
momentum and p-adic length scale dependence of propagators in this
picture and the option based on super-canonical algebra predicts very
simple and elegant expression for the propagator with all the desired
properties.

8. Quantum field theory formulation of quantum TGD
The super-canonical generalization of a 2-dimensional conformal

field theory seems to be indispensable for the construction of S-matrix
at the fundamental level and defines the vertices as n-point functions
of a conformal field theory in turn used to construct S-matrix as tree
diagrams. Also a quantum field theory defined for 3-surface X3 be-
longing to the light like 7-surfaces X3

l × CP2 defining causal determi-
nants seems to make sense. The QFT in question is determined by the
absolute minimum X4(X3) associated with the maximum of Kähler
function and is consistent with the loop corrections in configuration
space. The restriction to X3 realizes quantum holography and means
that a minimum amount of data about X4(X3) is needed.

The modified Dirac action for the induced spinor fields at the max-
imum of the Kähler function with induced spinor fields identified as
Grassmann algebra valued fields provides the sought for action. The
fermionic propagator is defined by the inverse of the modified Dirac
operator. Bosonic kinetic term is Grassmann algebra valued and van-
ishes for ψ = 0 and contributes nothing to the perturbation series in
accordance with effective freezing of the configuration space degrees of
freedom. Since the fermionic action is free action, a divergence free
quantum field theory is in question. One could also see the action as a
fixed point of the map sending action to effective action in accordance
with the idea that loop corrections vanish. Different sub-algebras of the
super-canonical algebra correspond naturally to various conformally
inequivalent configuration space metrics and infinite-dimensional sub-
algebras correspond to the singular limits when the space-time surface
becomes vacuum extremal so that the modified Dirac operator vanishes
identically and super-canonical propagator becomes ill-defined.

1 Introduction

The great dream of a physicist believing in reductionism and TGD would
be a formalism generalizing Feynman diagrams allowing any graduate stu-
dent to compute the predictions of the theory. TGD has forced myself to
give up naive reductionism but I believe that TGD allows a generalization of
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Feynman diagrammatics free of the infinities plaguing practically all existing
theories. The purpose of this chapter is to develop a general vision about
how this might be achieved. The vision is based on generalization of math-
ematical structures discovered in the construction of topological quantum
field theories (TQFT) and conformal field theories (CQFT). In particular,
the notions of Hopf algebras and quantum groups, and categories are central.
The following gives a very concise summary of the basic ideas.

1.1 Feynman diagrams as generalized braid diagrams

The first key idea is that generalized Feynman diagrams are analogous to
knot and link diagrams in the sense that they allow also ”moves” allowing
to identify classes of diagrams and that the diagrams containing loops are
equivalent with tree diagrams, so that there would be no summation over
diagrams. This would be a generalization of duality symmetry of string
models.

TGD itself provides general arguments supporting same idea. The iden-
tification of absolute minimum of Kähler action as a four-dimensional Feyn-
man diagram characterizing particle reaction means that there is only single
Feynman diagram instead of functional integral over 4-surfaces: this dia-
gram is expected to be minimal one. At quantum level S-matrix element
can be seen as a representation of a path defining continuation of configura-
tion space (CH) spinor field between different sectors of CH corresponding
to different 3-topologies. All continuations and corresponding Feynman dia-
grams are equivalent. The idea about Universe as a computer and algebraic
hologram allows a concrete realization based on the notion of infinite primes,
and space-time points become infinitely structured monads [E10]. The gen-
eralized Feynman diagrams differing only by loops are equivalent since they
characterize equivalent computations.

1.2 Coupling constant evolution from quantum criticality

The basic objection against the new view about Feynman diagrams is that
it is not consistent with the notion of coupling constant evolution involving
loops in an essential manner. The objection can be circumvented. Quantum
criticality requires that Kähler coupling constant αK is analogous to critical
temperature (so that the loops for configuration space integration vanish)
and thus highly unique.

1. A hypothesis motivated by the enormous vacuum degeneracy of Kähler
action was that αK has an infinite number of possible values labelled
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by p-adic length scales and possibly also by the dimensions of effec-
tive tensor factors defined hierarchy of II1 factors (so called Beraha
numbers) as found in [E10, C7]. The dependence on p-adic length
scale Lp would correspond to the usual renormalization group evolu-
tion whereas the latter dependence would correspond to a finite an-
gular resolution and to a hierarchy of finite-dimensional extensions of
p-adic number fields Rp. The finiteness of the resolution is forced by
the algebraic continuation of rational number based physics to real and
p-adic number fields since p-adic and real notions of distance between
rational points differ dramatically. The higher the algebraic dimension
of the extension and the higher the value of p-adic prime the better
the angular (or phase) resolution and nearer the p-adic topology to
that for real numbers.

p-Adic renormalization group invariance of the gravitational constant
led to an explicit model for the dependence of αK on p. This option
has not led to an understanding of electro-weak and color coupling evo-
lutions: the basic problem is that the increase of αK at high energies
is predicted to be too fast.

2. The most stringent hypothesis is that only single value of αK is pos-
sible and this was indeed the original hypothesis. The reason for
giving it up was that the p-adic evolution of the gravitational cou-
pling strength was predicted to evolve as G ∝ L2

p and thus quite too
rapidly. However, if gravitons correspond to the largest non-super-
astrophysical Mersenne prime M127, gravitational interactions are me-
diated by space-time sheets with effective p-adic topology character-
ized by M127 and gravitational coupling is effectively RG invariant.
One can also correlate the p-adic evolution of color and electro-weak
couplings [C4] in a successful manner and to identify the value of αK

as the value of electro-weak U(1) coupling for Mersenne prime M127.
Therefore it seems to safe to conclude that the situation is completely
settled now.

1.3 R-matrices, complex numbers, quaternions, and octo-
nions

A crucial observation is that physically equivalent R-matrices of 6-vertex
models are labelled by points of CP2 whereas maximal space of commutating
R-matrices are labelled by the points of 2-sphere S2 [19]. As found in [E10,
E2], CP2 also labels maximal associative and thus quaternionic sub-spaces of
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8-dimensional octonion space. S2 in turn labels the maximally commutative
sub-spaces of quaternion space, which suggests that R-matrices and these
structures correspond to each other.

Number theoretic vision leads to a number theoretic variant of sponta-
neous compactification meaning that space-time surfaces could be regarded
either as hyper-quaternionic, and thus maximal associative, 4-surfaces in
M8 regarded as the space of hyper-octonions or as surfaces in M4 × CP2

(the imaginary units of hyper-octonions are multiplied with
√−1 so that

the number theoretical norm has Minkowski signature)[E2]. Associativity
constraint is an essential element of also Yang-Baxter equations [18, 19].

These observations lead to a concrete proposal how quantum classical
correspondence is realized classically at the space-time level. Each point of
CP2 corresponds to R-matrix and 3-surfaces can be identified as preferred
sections of the space-time surface by requiring that unitary R-matrices are
commuting in the section (micro-causality) whereas commutativity fails for
R-matrices corresponding to different values of time coordinate defined by
this foliation.

1.4 Ordinary conformal symmetries act on the space of super-
canonical conformal weights

TGD predicts two kinds of super-conformal symmetries.

1. The ordinary super-conformal symmetries realized at the space-time
level are associated with super Kac-Moody representations realized at
light-like 3-surfaces appearing as boundaries of space-time sheets and
boundaries between space-time regions with Euclidian and Minkowskian
signature of metric. Conformal weights are half-integer valued in this
case.

2. Super-canonical conformal invariance acts at the level of imbedding
space and corresponds to light-like 7-surfaces of form X3

l × CP2 ⊂
M4×CP2 believed to appear as causal determinants too. In this case
conformal weights are complex numbers of form ∆ = n/2 + iy for the
generators if super algebra, and I have proposed that the conformal
weights of the physical states correspond are of form 1/2 + iy, where
y is zero of Riemann Zeta or possibly even superposition of them. In
the latter case the imaginary parts of zeros would define a basis of an
infinite-dimensional Abelian group spanning the weights. Later it will
be found that quantum criticality favors zeros but not superpositions
of their imaginary parts.
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The basic question concerns the interaction of these conformal symme-
tries.

1. Quantum classical correspondence suggests that the complex confor-
mal weights of super-canonical algebra generators have space-time
counterparts. The proposal is that the weights are mapped to the
points of geodesic sphere of CP2 (and thus also of space-time surface)
labelling also mutually commuting R-matrices. The map is completely
analogous to the map of momenta of quantum particles to the points
of celestial sphere. One can thus regard super-generators as confor-
mal fields in space-time or complex plane having conformal weights
as punctures. The action of super-conformal algebra and braid group
on these points realizing monodromies of conformal field theories [19]
induces by a pull-back a braid group action on the conformal labels
of configuration space gamma matrices (super generators) and corre-
sponding isometry generators.

2. The gamma matrices and isometry generators spanning the super-
canonical algebra can be regarded as fields of a conformal field theory
in the complex plane containing infinite number of punctures defined
by the complex conformal weights. Quaternion conformal Super Vira-
soro algebra and Kac Moody algebra would act as symmetries of this
theory and the S-matrix of TGD would involve the n-point functions
of this conformal field theory.

This picture also justifies the earlier proposal that configuration space
Clifford algebra defined by the gamma matrices acting as super generators
defines an infinite-dimensional von Neumann algebra possessing hierarchies
of type II1 factors [20] having a close connection with the non-trivial repre-
sentations of braid group and quantum groups. The sequence of non-trivial
zeros of Riemann Zeta along the line Re(s) = 1/2 in the plane of conformal
weights could be regarded an an infinite braid behind the von Neumann
algebra [20]. Contrary to the expectations, also trivial zeros seem to be
important. Purely algebraic considerations support the view that super-
position for the imaginary parts of non-trivial zeros makes sense so that
one would have entire hierarchy of one-dimensional lattices depending on
the number of zeros included. The finite braids defined by subsets of ze-
ros could be seen as a hierarchy of completely integrable 1-dimensional spin
chains leading to quantum groups and braid groups [18, 19] naturally. In
conformal field theories it is possible to construct explicitly the generators
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of quantum group in terms of operators creating screening charges [19]: in-
terestingly, the charges are located going along a line parallel to imaginary
axis to infinity.

It seems that not only Riemann’s zeta but also polyzetas [21, 22, 28, 29]
could play a fundamental role in TGD Universe. The super-canonical con-
formal weights of interacting particles, in particular of those forming bound
states, are expected to have ”off mass shell” values. An attractive hypothesis
is that they correspond to zeros of Riemann’s polyzetas. Interaction would
allow quite concretely the realization of braiding operations dynamically.
The physical justification for the hypothesis would be quantum criticality.
Indeed, it has been found that the loop corrections of quantum field theory
are expressible in terms of polyzetas [23]. If the arguments of polyzetas
correspond to conformal weights of particles of many-particle bound state,
loop corrections vanish when the super-canonical conformal weights corre-
spond to the zeros of polyzetas including zeta. This argument does not allow
superpositions of imaginary parts of zeros.

1.5 Equivalence of loop diagrams with tree diagrams from
the axioms of generalized ribbon category

The fourth idea is that Hopf algebra related structures and appropriately
generalized ribbon categories [18, 19] could provide a concrete realization of
this picture. Generalized Feynman diagrams which are identified as braid
diagrams with strands running in both directions of time and containing be-
sides braid operations also boxes representing algebra morphisms with more
than one incoming and outgoing strands. 3-particle vertex should be enough,
and the fusion of 2-particles and 1 → 2 particle decay would correspond to
generalizations of the algebra product µ and co-product ∆ to morphisms
of the category defined by the super-canonical algebras associated with 3-
surfaces with various topologies and conformal structures. The basic axioms
for this structure generalizing ribbon algebra axioms [18] would state that
diagrams with self energy loops, vertex corrections, and box diagrams are
equivalent with tree diagrams.

Tensor categories might provide a deeper understanding of p-adic length
scale hypothesis. Tensor primes can be identified as vector/Hilbert spaces,
whose real or complex dimension is prime. They serve as ”elementary parti-
cles” of tensor category since they do not allow a decomposition to a tensor
product of lower-dimensional vector spaces. The unit I of the tensor cat-
egory would have an interpretation as a one-dimensional Hilbert space or
as the number field associated with the Hilbert space and would act like
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identity with respect to tensor product. Quantum jump cannot decompose
tensor prime system to an unentangled product of sub-systems. This ele-
mentary particle like aspect of tensor primes might directly relate to the
origin of p-adicity. Also infinite primes are possible and could distinguish
between different infinite-dimensional state spaces.

For quantum dimensions [n]q ≡ (qn − q−n)/(q − q−1) [18] no decompo-
sition into a product of prime quantum dimensions exist and one can say
that all non-vanishing quantum integers [n]q are primes. For q an nth root
of unity, quantum integers form a finite set containing only the elements
0, 1, ...., [n − 1] so that quantum dimension is always finite. The numbers
[2]2q , for q = exp(iπ/n) define a hierarchy of Beraha numbers having an in-
terpretation as a renormalized dimension [2]2q ≤ 4 for the Clifford algebra
of 2-dimensional space and appearing as effective dimensions of type II1

sub-factors of von Neumann algebras.

1.6 What about loop diagrams with a non-singular homo-
logically non-trivial imbedding to a Riemann surface of
minimal genus?

There is an objection against the reduction to tree diagrams. Photon-photon
scattering rate vanishes classically (zeroth order in h̄), and the lowest non-
vanishing contribution to the scattering amplitude corresponds to a box
diagram and diagrams obtained from it by permuting the outgoing photon
lines. All diagrams that can have intersecting lines as planar diagrams when
outgoing lines are permuted, can be imbedded to a Riemann surface with
some minimal genus as diagrams without intersecting lines containing a
minimal number of homologically non-trivial loops.

This suggests a more general axiom: diagrams are characterized by genus
and only homologically trivial loops can be eliminated. Also the question
arises whether a sum over the different genera must be assumed as string
model would suggest or whether single value of genus is enough. The dis-
cussion of this chapter assumes a reduction to a tree diagram but the gen-
eralization allowing all values of genus should be rather straightforward.

1.7 Quantum criticality and renormalization group invari-
ance

Quantum criticality means that renormalization group acts like isometry
group at a fixed point rather than acting like a gauge symmetry as in the
standard quantum field theory context. Despite this difference it is possible
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to understand how Feynman graph expansion with vanishing loop correc-
tions relates to generalized Feynman graphs and a nice connection with the
Hopf- and Lie algebra structures assigned by Connes and Kreimer to Feyn-
man graphs emerges. It is possible to deduce an explicit representation for
the universal momentum and p-adic length scale dependence of propagators
in this picture. The condition that loop diagrams are equivalent with tree
diagrams gives explicit equations which might fix completely also the p-
adic length scale evolution of vertices. Quantum criticality in principle fixes
completely the values of the masses and coupling constants as a function of
p-adic length scale.

To sum up, although these new ideas are rather speculative and my
poor algebraic skills restrict severely the attempts to develop them into a
more detailed theory, I believe that the new vision makes a big step in
concretizing the physics as a generalized number theory vision. There is a
lot of work to do. The implications for the construction of configuration
space geometry and spinor structure are expected to be highly non-trivial
and should tighten the loose web of ideas about the relationship and role of
super-canonical and Super-Kac-Moody algebras. The new ideas relate also
closely to the p-adicization program being partly inspired by it. Also the
fascinating idea that M4×CP2 a emerges naturally from the interpretation
of space-time surfaces as maximally associative 4-manifolds of octonionic
space should be developed further.

2 Generalizing the notion of Feynman diagram

In this section various motivations for generalizing the notion of Feynman
diagram such that diagrams with loops are equivalent with tree diagrams
are discussed.

2.1 Divergence cancellation mechanisms in TGD

TGD provides general mechanisms for the cancellation of ultraviolet diver-
gences.

1. The standard divergence due to the Gaussian determinant is absent in
TGD. The Kähler geometry of the configuration space implies a can-
cellation of the configuration space metric determinant and Gaussian
determinant associated with the integral over the quantum fluctuating
configuration space degrees of freedom by Gaussian integration around
a maximum of Kähler function.
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2. The divergences due to the 3-dimensional micro-locality are absent due
to the generalization of point particle which means that state function-
als are non-local functionals of the 3-surface and local interaction ver-
tices are smoothed out. Locality is realized at the configuration space
level but there is now second quantization at this level since physical
states correspond to classical configuration space spinor fields.

3. The vacuum energy for induced second quantized spinor fields cancels
when fermions and anti-fermions have opposite sign of inertial energy.
Crossing symmetry allows vanishing of the net inertial energy at least
in cosmological length scales and even shorter length scales assuming
that gravitational four-momentum is the difference of 4-momenta as-
sociated with matter and antimatter with an appropriate sign factor
taking care that gravitational energy is positive.

4. The infinite-dimensional space of zero modes does not allow any nat-
ural integration measure. If localization in zero modes occurs in each
quantum jump and leads to a discrete subspace of zero modes, the
integration over zero modes becomes trivial. The localization can be
interpreted in terms of a quantum measurement correlating classical
macroscopic degrees of freedom represented by zero modes correlated
with quantum fluctuating degrees of freedom. Entanglement need not
be reduced completely since discrete subset of zero modes can remain
entangled in this manner.

2.2 Motivation for generalized Feynman diagrams from topo-
logical quantum field theories and generalization of string
model duality

There are many manners to end up to the idea that generalized Feynman
diagrams are analogous to knot and link diagrams and that diagrams with
loops are equivalent with tree diagrams.

2.2.1 Topological quantum field theories

The work with topological quantum computation (TQC, see [E9]) provided
very fruitful stimuli and insights about quantum TGD itself. TQC [30, 31,
32] involves topological notions like links, knots and braids, and topological
invariants of 3-manifolds. The pioneering works was done by Jones with
knot polynomials [35] who noticed also the connection with von Neumann
algebras and so called Beraha numbers [36] appearing also in the quantum
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group context and in representations of braid groups. Topological quantum
field theories (TQFT) [33] pioneered by Witten [34] provide an extremely
powerful and abstract approach to the deduction of these invariants. The
computations of these invariants involve a diagrammatic approach based on
recursion bring in mind Feynman diagrams.

There is close relationship with conformal quantum field theories (CQFT)
and related mathematical structures referred to as co-algebras, bi-algebras,Hopf
algebras,quantum groups and category theory [19]. Since the generalized
conformal invariance is a basic element of quantum TGD, this raises the
hope that the replacement of ”topological” with ”conformal” might not not
be so drastic a modification after all. If this is the case, one might hope that
the generalization of Feynman diagrams might be based on the generaliza-
tion of braid diagrams by bringing in the interaction in which the strands
of braid can decay and fuse.

Even more, one might hope that the notion of equivalence for braid
diagrams allowing to transform these diagrams to each other by ”elementary
moves” could allow to identify loop diagrams with tree diagrams so that
divergence problem would disappear.

2.2.2 Fusion rules of conformal field theories and generalization
of duality

Conformal invariance is the basic symmetry of also quantum TGD so that
it is natural to look what one might learn from conformal quantum field
theories, which rely on the notion of field algebra.

In conformal field theories fusion rules [19] for operator algebra code
the vertices of the theory to numerical coefficients: Φk(z, z)Φl(w, w) =
Cm

kl (z − w, z − w)Φm(w, w) modulo derivative terms which vanish in vac-
uum expectation values. Conformal invariance dictates two-point functions
completely and three-point functions apart from numerical coefficients since
one can write Cm

kl (z, z) = z∆m−∆k−∆lz∆m−∆k−∆lCm
kl . 4-point functions and

also higher n-point functions can be constructed once the coefficients Cm
kl

are known.
In particular, four-point functions can be expressed in terms of three

point functions by interpreting them in terms of particle scattering as a sum
of s-channel resonance or t-channel exchanges and the coefficients Cm

kl appear
explicitly in these conditions. Duality corresponds to crossing symmetry
which is of special importance in TGD framework where particle reaction
can be interpreted as a creation of a state with vanishing conserved quantum
numbers from vacuum. Rather remarkably, crossing symmetry is in turn
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equivalent with the associativity of the field algebra. One can express four-
point function in terms of so called conformal blocks and crossing symmetry
leads to conditions which can be solved in many cases.

This occurs when the primary field content of the theory is finite. This
occurs when the Verma modules V∆ associated with the primary fields con-
tain zero norm states and thus contain a finite number of descendants (being
thus effectively finite-dimensional as representations of conformal algebra)
and when the operator products of the primary fields close to a finite alge-
bra. The exceptional weights ∆ are algebraic numbers involving only square
roots of integers and thus p-adically highly interesting. In the case of rational
(super-)conformal field theories the conformal weights are rational numbers
and conformal Ward identities allow the construction of the descendants of
the primary field Φ∆ explicitly. The conformal weights for the finite number
primary fields can be listed and fusion coefficients written explicitly. Same
applies to super-symmetric variants of these theories. Rational conformal
field theories are of special interest in TGD framework since there are good
hopes that at least they allow a continuation to p-adic number fields. Note
however that the allowed conformal weights for theories allowing null vectors
are always algebraic numbers.

It would seem that the field algebra of conformal field theories might
closely relate to what happens in 3-particle vertex for incoming particles.
Fusion corresponds to an algebra product. In conformal field theories also
co-algebras for which multiplication is replaced with co-multiplication anal-
ogous to a particle decay are important. This encourages to think that a
suitable generalization of Hopf algebra with duality involving both multi-
plication µ and co-multiplication ∆ in a well defined sense time reversals of
each other by the duality, should be fundamental for the algebraization of
Feynman rules.

String model duality which allows to identify diagrams involving reso-
nances in s-channel with diagrams involving exchanges in t- or u-channel.
The additional space-dimension brought in by TGD might mean a gener-
alization of duality so that any diagram with loops would be equivalent
with tree diagram, or more generally, to a diagram imbeddable without in-
tersections to a Riemann surface with minimal genus and having minimal
number of loops (photon photon scattering suggests this). In the following
the consideration is restricted to tree diagrams.

The commuting diagrams expressing the fact that multiplication µ is
co-algebra morphism and co-multiplication ∆ is algebra morphism indeed
state that box diagram describing two-particle scattering is equivalent with
tree diagram and it turns out that additional natural postulates would state
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that also self energy diagrams and vertex correction diagrams are equivalent
with corresponding tree diagrams.

2.3 How to end up with generalized Feynman diagrams in
TGD framework?

In TGD framework there are several manners to end up with the proposed
vision about Feynman diagrams with generalized moves eliminating loops.
The idea that loop integrations giving rise to the renormalization of coupling
constants and to anomalous dimensions vanish is consistent with this view
and also emerges naturally in TGD framework.

2.3.1 Quantum classical correspondence and the replacement of
sum over Feynman diagrams with single diagram

The basic difference between TGD and standard QFT:s is that the con-
struction of configuration space geometry assigns to a given 3-surface X3

a unique space-time surface X4(X3) as absolute minimum of Kähler action
or some more general preferred extremal [E2]. Although the classical non-
determinism of Kähler action forces to modify this picture, the implication
is that the functional integral over all 4-surfaces X4 going through X3 is
replaced with single 3-surface X4(X3). Quantum classical correspondence
allows the interpretation of X4(X3) as a generalized Feynman diagram.
Hence single Feynman diagram without loops, ”tree diagram”, would char-
acterize particle reaction and correspond the simplest possible generalized
Feynman diagram among many equivalent ones. The vacuum degeneracy of
Kähler action and the consequent non-determinism might mean that there
indeed exists a large, or even infinite, number of equivalent absolute pre-
ferred Bohr orbit like extremals of Kähler action [B1, E2] equivalent as far
as computation of S-matrix is considered. Deterministic regions of space-
time sheets could be seen as diagrams with incoming and outgoing on mass
shell particles. Also the possibility that these diagrams are not equivalent
can be considered. ”Homotopically non-equivalent” diagrams could be per-
haps interpreted as time evolutions occurring in different quantum phases.

2.3.2 Quantum criticality requires the vanishing of loop correc-
tions

Configuration space integration over quantum fluctuating degrees of free-
dom leads to a perturbative expansion similar to the ordinary Feynman di-
agrammatics. Quantum criticality states that the Kähler coupling strength

21



is analogous to a critical temperature and has only a discrete set of values,
at least one for each p-adic number field Rp and each algebraic extension of
Rp. Quantum criticality requires loop corrections to the configuration space
integral vanish so that it would reduce effectively to a Gaussian integral
around a maximum of Kähler function for given values of zero modes.

Coupling constant evolution assignable with loop diagrams would be
coded by the dependence of ”critical temperature” on p (p-adic length scale)
and algebraic extension of Rp. The loop gymnastics could be seen as an ex-
tremely tedious manner to model discrete p-adic coupling constant evolution
having more elegant description in terms of quantum criticality.

2.3.3 p-Adicization requires the vanishing of loop corrections

Also the hypothesis that S-matrix elements can be algebraically continued
to real and various p-adic number fields encourages the hope that configu-
ration space integration must effectively reduce to an effectively Gaussian
integral around a maximum of Kähler function so that simple expressions in-
volving only rational, algebraic, and exponential functions requiring a finite-
dimensional extension of p-adic numbers result making it possible to con-
tinue the expressions to p-adic number fields. The reason is that infinite
sums of diagrams are not expected to give a result boiling down something
expressible in terms of these functions.

Theory would formally reduce to a free field theory and the non-triviality
of the theory would be basically due to the topological description of particle
reactions. The symmetric space property of the quantum fluctuating degrees
freedom and Duistermaat-Hecke theorem [37] stating that functional integral
can be expressed as an exponential of Kähler function K associated with the
maximum of K give indeed good hopes that the dream might be realized.

2.3.4 The construction of S-matrix as analytic continuation be-
tween different sectors of configuration space

By quantum classical correspondence particle reactions correspond to pro-
cesses changing 3-topology. For instance, the decay of a particle to two
final state particles in Fock sense corresponds to a decay of a connected 3-
surface to two disjoint components. In string models this can be described
using smooth string world sheet whereas the string representing the vertex
is singular eye glass like configuration. TGD suggests a different approach
in which lines are replaced with singular four-manifolds whose ends meet
at non-singular 3-manifold representing vertex is more appropriate. As a
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matter fact, the first proposal to describe S-matrix in terms of CP2 type ex-
tremals led to this picture but was thought to be a mere approximation at
that time [C3]. In this picture the stringy branching of the 3-surface would
have interpretation as a space-time correlate for what it means that parti-
cle traverses simultaneously through several paths as in the case of double
slit experiment. This certainly conforms with what happens to the induced
second quantized spinor field in the branching.

For both options the generalized Feynman diagrams could be seen as
characterizing the paths involved with a continuation of a configuration
space spinor field from a given sector to another one. Any path will do
and this implies a large number of moves allowing to construct the simplest
possible Feynman diagram characterizing the continuation. Each topology
change would give rise to a vertex and motion inside given sector would
presumably correspond to a stringy propagator. Also other than topological
characteristics, say the parameters characterizing conformal structure, might
be involved.

At the space-time level the continuation would reduce to a continuation
of second quantized free induced spinor fields from a given 3-topology to
a new one. The 3-vertices describing decay and fusion provide the basic
examples. The task of continuing an induced spinor field and corresponding
fermionic Fock space from single-particle sector to two-particle sector means
finding of an algebra morphism imbedding a single particle Fock algebra to
a tensor product of Fock algebras and is highly analogous to finding of a
co-algebra product ∆. The time reversal of ∆ corresponds to a fusion vertex
at the Fock space level. The construction of S-matrix would reduce to the
solution of this continuation problem and one might hope that the process
boils down to general algebra axioms.

2.3.5 The notion of Platonia and Feynman diagrams as compu-
tations

As found in [E10], the notion of infinite primes [E3] leads to a generaliza-
tion of real numbers since an infinite algebra of real units becomes possible.
These units are not units in the p-adic sense and have a finite p-adic norm
which can be differ from one. Infinite primes form an infinite hierarchy
so that the points of space-time and imbedding space can be seen as in-
finitely structured and able to represent all imaginable algebraic structures.
Certainly counter-intuitively, single space-time point is even capable of rep-
resenting the quantum state of the entire physical Universe in its structure.
For instance, in real sense surfaces in the space of units correspond to the
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same real number 1, and single point, which is structure-less in the real
sense could represent arbitrarily high-dimensional spaces as unions of real
units. For real physics this structure is completely invisible and is relevant
only for the physics of cognition. One can say that Universe is an algebraic
hologram, and there is an obvious connection both with Brahman=Atman
identity of Eastern philosophies and Leibniz’s notion of monad.

The along curve makes means that both real and p-adic norms of the
unit multiplying the point along curve are constant. The curve allows in-
terpretation as a representation of an energy conserving time evolution of
an arithmetic quantum field theory. In a complete analogy with the contin-
uation at the configuration space level and analytic continuation, the time
evolution defined by the cobordism does not depend on the path traversed.
Each curve represents a discrete sequence of phase transitions changing the
unit and the interpretation as a Feynman diagram like structure is very
attractive.

The requirement that the configuration space paths defining generalized
Feynman graphs are cognitively representable as cobordisms of a point pro-
vides a powerful heuristic tool in the attempts to say something non-trivial
about the general properties of S-matrix. The cobordism of a point can be
generalized in several manners.

In this approach Feynman diagrams could be seen as sequences of com-
putations satisfying some algebraic rules fixed by the model that is mim-
icked. Computations themselves form a local algebra. The basic super rule
satisfied always would be the conservation of guaranteing real and p-adic
continuities. The generalized Feynman diagram defining a representation of
an algebraic computation would determine an element of algebra since the
algebra elements associated with different points of space-time surface form
a local algebra structure. The simplest possible Feynman diagram would
correspond to a tree diagram.

Many interpretations are possible. The preferred Bohr orbit like ex-
tremals of Kähler action could represent the simplest computations leading
from an input to the outcome or minimal sequences of steps making up a
proof of a theorem. At the level of configuration space, the simplest Feynman
diagram would correspond to the simplest path allowing to continue config-
uration space spinor field from a given sector D1 with a fixed 3-topology to
another sector D2.

The algebraic interpretation implies powerful symmetries. By replacing
the topological invariance with the generalized conformal invariance serving
as the basic symmetry of also TGD, it might be possible to generalize the
construction of modular invariant S-matrices of topological quantum field
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theories to that of conformally invariant S-matrices by adding the fusion and
decay of braid strands as additional operations to an appropriate braided
category. The very intimate relationship between topological and conformal
quantum field theories raises the hope about concrete predictions.

3 Algebraic physics, the two conformal symme-
tries, and Yang Baxter equations

TGD predicts two conformal symmetries corresponding to super-canonical
symmetries acting at the level of imbedding space H = M4×CP2 and Super-
Kac-Moody symmetries acting at the space-time level. If the notion of num-
ber theoretic spontaneous compactification makes sense there are also the
analogs of conformal symmetries defined by hyper-octonion analytic maps
of OH = M8 and hyper-quaternion analytic maps of space-time surface
regarded as a hyper-quaternionic 4-surface in M8 [E2]. These symmetries
would induce dynamical symmetries at the level of H.

1. The super-canonical conformal algebra appears naturally in the con-
struction of the configuration space geometry for H = M4

+ × CP2

option at the 7-dimensional light-like boundary of M4
+×CP2 and has

complex conformal weights, possibly identifiable as zeros of Riemann
zeta. The non-determinism of Kähler action and aesthetic consid-
erations encourage the expectation that all light-like surfaces X3

l of
M4 define 7-dimensional light-like causal determinants X3

l × CP2 in
this sense. Light-like 3-surfaces form a foliation of M4 or M4 by 4-
dimensional general coordinate invariance and one can use any light-
like 3-surface. The classical non-determinism of course poses restric-
tions.

2. The super-conformal algebra associated with the 3-dimensional light-
likes surfaces X3

l , which can appear as boundaries of space-time sheets
and as elementary particle horizons at which the induced metric is de-
generate corresponds to the ordinary super Kac-Moody algebra SKM
of elementary particle physics and of string models. Conformal weights
are now real and half integer valued.

The challenge is to understand how these symmetries relate to each other
and and how they interact. Quantum classical correspondence allows to de-
duce a rather detailed interpretation of the basis of super-canonical algebra
interpreted as super-conformal fields in the space defined by the complex
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conformal weights labelling them, and SKM conformal algebra having natu-
ral infinitesimal action in the space of super-canonical weights. Therefore he
powerful machinery of super-conformal theories becomes directly available
and allows to make educated guesses about the basic structure of S-matrix.

Yang-Baxter equations characterize the physics of two-dimensional inte-
grable systems [18, 19] and define a core element of braided Hopf algebras,
braid group representations appearing in topological and conformal quan-
tum field theories. R-matrices relate very directly to the Clifford algebra of
the configuration space gamma matrices defining the fermionic part of super-
canonical algebra and they act at the space-level too. Hence the physics of
two-dimensional integrable systems and conformal field theories become a
quintessential part of quantum TGD.

3.1 Space-time sheets as maximal associative sub-manifolds
of the imbedding space with hyper-octonion structure

The vision about physics as a generalized number theory stimulated a devel-
opment, which led to the notion of number theoretic compactification [E2].
Space-time surfaces can be regarded either as hyper-quaternionic, and thus
maximal associative, 4-surfaces in M8 having hyper-octonion structure, or
as surfaces in M4 × CP2 [E2]. Hyper-quaternions/-octonions form a sub-
space of complexified quaternions/-octonions for which imaginary units are
multiplied by

√−1: they are needed in order to have a number theoretic
norm with Minkowski signature. What makes this duality possible is that
CP2 parameterizes different quaternionic planes of octonion space contain-
ing a fixed imaginary unit. S2 can in turn be interpreted as the parameter
space labelling the maximal commutative subspaces, i.e. complex planes, of
a quaternionic space. The specification of quaternion plane is necessary in
order to introduce octonion Hermitian structure whereas the specification
of preferred imaginary unit (that is complex plane) is necessary in order to
fix Hermitian structure in hyper-quaternionic tangent plane [E2].

Hyper-quaternionic sub-spaces are also maximal associative sub-spaces.
The physical counterpart of associativity is crossing symmetry: in confor-
mal field theories crossing symmetry follows from the associativity for the
products of fields. The Yang-Baxter equations emerging naturally in 2-
dimensional integrable quantum field theories and statistical systems state
the associativity of braiding operations in the case of three strand braid.
Thus it would not be surprising if there were connection between Yang-
Baxter equations and space CP2 of quaternionic sub-spaces of octonions.
Commutativity of R-matrices means commutativity of braiding operations
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and this suggests that also the sphere labelling complex planes of quaternion
space might emerge naturally in the context of Yang-Baxter equations.

Indeed, the Yang-Baxter matrices defining equivalent 6-vertex models
are parameterized by CP2 whereas mutually commuting Yang-Baxter mod-
els by sphere S2. These findings lead to a quite detailed albeit speculative
view about quantum classical correspondence.

1. One can select a 4-parameter subset of equivalent R-matrices

R =




a 0 0 0
0 b c 0
0 b c 0
0 0 0 a


 (1)

in such a manner that they are apart from a real multiplicative con-
stant r unitary matrices labelled by 3-parameters (Θ,Φ, Ψ) and one
has

R = rexp(iΦ)×




exp(iΨ) 0 0 0
0 cos(θ) isin(θ) 0
0 isin(θ) cos(θ) 0
0 0 0 exp(iΨ)


 (2)

r is identifiable as the U(2) invariant radial coordinate of CP2 and
(Θ, Φ,Ψ) are identifiable as spherical coordinates of r = constant 3-
sphere of CP2.

If it is possible to interpret the points of CP2 as labels of R-matrices,
one could assign to a given point of space-time surface a unitary R-
matrix labelling the quaternion structure of the tangent space at that
point. The R-matrices with the same value of the parameter

∆ =
a2 + b2 − c2

2ab
(3)

commute as is easy to verify. With the parametrization used this
means that the commuting R-matrices corresponds to the sphere de-
fined by the equation
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cos(θ)
cos(ψ)

= constant . (4)

2. A classical space-time correlate for equal time commutation relations
of quantum field theories suggests itself. In the generic case the space-
time surface would decompose into lines along which r varies and the
”S-matrix” defined by the R-matrix would be constant along these
lines. One could choose the time coordinate in such a manner that time
constant 3-surface would foliated this kind of lines. The R-matrices
associated with a 3-surface would be labelled by two coordinates, and
by a proper selection of time coordinate it might be possible to de-
compose time=constant 3-surfaces to regions inside which R-matrices
commute with each other and correspond to different complex planes
in the space of quaternions. The R-matrices corresponding to different
values of time coordinate would not commute.

3. Space-time evolution would induce an adiabatic evolution of a confor-
mal quantum field theory. In particular, an evolution of the transfer
matrix or S-matrix of a two-dimensional integrable model with respect
to the parameters characterizing the matrix, and of n-point functions
of a conformal field theory would be induced.

4. Particle decay could be interpreted in terms of a flow in which 3-surface
X3 decomposes to two disjoint components Y 3 and Z3 such that the
R matrices associated with different points y of Y 3 resp. z of Z3 com-
mute but the commutativity fails for R-matrices associated with y and
z. The loss of commutativity and decay to pieces can be interpreted in
terms of quantum de-coherence. This flow interpretation might signif-
icantly help in the construction of mathematical description of particle
reactions.

Of course, here one encounters two possible interpretations for what
particle decay means corresponding to the stringy picture and vertex
identified as a 3-surfaces which defines the common end of incoming
4-surfaces. If both 3-surfaces decompose to union of one-dimensional
curves along which the S-matrix defined by R-matrix is constant, the
stringy decay could be illustrated graphically also as a decay of string.
For second option a replication of string would be in question.
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3.2 Super Kac-Moody and corresponding conformal sym-
metries act on the space of super-canonical conformal
weights

TGD predicts to super-conformal algebras. Super-canonical algebra cer-
tainly appears in the construction of the configuration space metric and
spinor structure. Quaternion conformal algebra which generalizes the Kac
Moody algebras of string models and its role is somewhat unclear in this
respect.

3.2.1 Single particle super-canonical conformal weights and zeros
of Riemann Zeta

Configuration space spinors can be interpreted as systems describing Fock
states consisting of fermions with spin, electro-weak and color quantum num-
bers, plus a complex conformal weight. The work with conformal invariance
and Riemann hypothesis (see [E8] and [16, 17]) inspires the hypothesis that
the complex conformal weights labelling configuration space gamma ma-
trices and isometry generators defining super-canonical algebra could be
determined by the zeros of Riemann Zeta.

The conformal weights of the physical states would correspond to Re(h) =
n − 1/2 − i

∑
niyi, n ≥ 0 or n = 0, 1 at least, and to real axis the points

h = 2n, n > 0, corresponding to trivial zeros at s = −2n. The superpo-
sitions

∑
niyi of the imaginary parts of trivial zeros s = 1/2 + yi must be

allowed. These points label the algebra elements obtained by commuting
the algebra generators labelled by conformal weights which are the nega-
tives of the zeros of Riemann Zeta and negative integers. If one assumes
that Virasoro generators Ln, n ≥ 1, generate zero norm states, only the
n = 0, 1 option for the complex conformal weights remains. This option is
forced also by the construction of the scalar propagator as a partition func-
tion in the super-canonical algebra. n = 0, 1 restriction guarantees also the
orthogonality of the physical states.

These 1-dimensional lattices could define braid groups possessing an in-
finite number of generators appearing also in the description of type II1
factors of von Neumann algebras [20] as described in [E10]. The Clifford al-
gebra of the configuration space spinors would be the natural identification
for von Neumann algebra in question. The connection between hyperfi-
nite type II1 factors of von Neumann algebras, braid groups, and quantum
groups suggests that the existence of a quantum group structure at least in
configuration space spinor degrees of freedom. Also the braiding for ordi-
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nary conformal field theories is known to define quantum group structure
in a natural manner. The connection between R-matrices and quaternionic
and complex structures supports this expectation. The minimal assumption
would be that configuration space Clifford algebra for a given three-topology
can be regarded as ordinary algebra without co-product and that co-product
structure is associated only with the continuation of the Fock space structure
from single-particle sector to two-particle sector.

Configuration space gamma matrices defining super generators and cor-
responding bosonic generators could be interpreted as conformal fields in the
complex plane restricted to the punctures so that the vacuum expectation
values of Clifford algebra elements would have interpretation as correlation
functions of a conformal quantum field theory evaluated at points which
define the lattice of super-canonical conformal weights. Also a connection
with integrable lattice models suggests itself. In field theory context one
possible interpretation is that a particle of given mass has an infinite degen-
eracy corresponding to the various super-canonical conformal weights and
that one must sum in Feynmann diagrams over this degeneracy somehow.
Physical intuition suggests wave functions in the set of conformal weights.
This point will be discussed in detail later.

3.2.2 Mapping of super-canonical conformal weights to a geodesic
sphere of CP2

By quantum classical correspondence the construction of the S-matrix in
configuration space spinor degrees of freedom should reduce to a correspond-
ing construction at the space-time level. The idea that real physics and
various p-adic physics result through an algebraic continuation of rational
physics does not force discretization at the space-time level but leads in a
natural manner to emergence of discrete sets of rational points as intersec-
tions of real and p-adic space-time sheets [E1]. Both infrared and ultraviolet
cutoffs are involved since p-adically infinitesimal is infinite in the real sense
and vice versa (for some values of p for given real infinitesimal) so that most
points of p-adic space-time sheets are at real infinity. Each discretization
corresponds to a different extension of p-adic numbers such that an improv-
ing resolution means increasing dimension of extension implying improved
cognitive resolution.

The second quantized free spinor fields with a discretization at the space-
time level could be interpreted in terms of a conformal field theory. Quantum
classical correspondence would mean the mapping of the super-canonical
conformal weights to the space-time points, which correspond to points of
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geodesic sphere of CP2 giving rise to a family of commuting R-matrices.
The mapping of complex scaling momenta to complex surface S2 of CP2 is
analogous to the mapping of ordinary momenta to the points of the celes-
tial sphere relating quantum to classical. This mapping is natural because
configuration space gamma matrices are linearly related to the second quan-
tized induced spinor fields. The physical states in configuration spin degrees
of freedom might be characterized by the states of this system. In the real
context this would require taking the limit of vanishing UV cutoff.

Braiding operation characterized by the Yang-Baxter matrix R for a ten-
sor product of identical representations of braid group is the key element of
braided Hopf algebras and the considerations of [E10] led to the speculation
that braiding operation acts in the Clifford algebra of configuration space.
The light like boundaries of space-time surfaces allow generalized conformal
structure as metrically 2-dimensional structures. In a light hearted manner I
christened this conformal symmetry as quaternion conformal invariance (the
punishment has been a colossal find and replace procedure). A better term
would have been Super Kac-Moody symmetry. Hyper-quaternionic and -
octonionic analogs of conformal symmetry emerge naturally if the notion of
the number theoretic spontaneous compactification makes sense.

The braiding operation for ”particles” located in 2-dimensional sections
could be seen as a space-time correlate for a corresponding operation per-
formed for configuration space gamma matrices. The complex conformal
weights of configuration space gamma matrices for which also imaginary
part should be discrete in order to allow p-adicization could be interpreted
as counterparts for the coordinates of points of a one-dimensional lattice
defining an integrable system characterized by R-matrix. Configuration
space gamma matrices would become conformal fields as function of super-
canonical conformal weight on which super Kac-Moody conformal symme-
tries act infinitesimally.

3.2.3 Some ideas about generalized coset construction

In the following some ideas about generalized coset construction involv-
ing super-canonical and super Kac-Moody algebras are discussed. Unfortu-
nately, this discussion has become somewhat obsolete and is not in accor-
dance with the recent view about generalized coset construction discussed
in [C1] and relying on the notion of zero energy ontology.

1. Generalization of the coset construction as a manner to satisfy Super
Virasoro conditions
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Super Virasoro constraints pose an extremely powerful constraint on the-
ories possessing conformal invariance. The recent view about particle massi-
vation [F2] inspires the hypothesis that Olive-Kent-Goddard coset construc-
tion [48]generalizes in such a manner that the sums of super-canonical and
Super Kac Moody Super Virasoro generators annihilate the physical states.
This would provide a very elegant manner to understand and realized super
conformal invariance.

A possible interpretation would be in terms of a duality stating that these
two super algebras correspond to two different coordinatizations of the phys-
ical degrees of freedom of the configuration space and configuration space
spinors using imbedding space vector fields resp. imbedding space vector
valued fields defined at the space-time surface. In this picture one has also
hopes of understanding why the conformal transformations associated with
Super-Kac Moody algebra affect the conformal weights of super-canonical
algebra.

2. Constraints from unitarity

For the representations of Virasoro algebra allowing Verma modules
containing null states annihilated by Virasoro generators Ln, n > 0 con-
formal weights are quantized [19]. The simplest situation would corre-
spond to rational conformal weights ∆ and maximally symmetric super-
conformal quantum field theories known as rational super-conformal field
theories (RCFT) having a finite number of primary fields. In TGD frame-
work super-generators carry fermion number which leaves N = 2 super con-
formal theories (or possibly N = 4 theories, situation is still unsettled) as
the only physically acceptable option. The conformal weights are predicted
to be rational numbers in this case.

For Sugawara construction [19] the super Kac-Moody conformal weights
associated with the Hamiltonians are expressible in terms of the value of
Kac-Moody central extension parameter k and Casimir invariant of the
highest weight representation. For instance, in the case of SU(2) one has
∆(j) = j(j+1)

k+2 . Unitarity poses strong constraints on the super Kac-Moody
conformal weights.

In Wess-Zumino-Witten model also the analogs of Verma modules having
finite number of non-zero norm states for Kac Moody algebras emerge and
relate very closely to the corresponding phenomenon for quantum groups
[19]. Thus only a finite number of highest weight representations of Kac
Moody algebra appear as primary fields in WZW model. The theory pre-
dicts the dependence of the conformal weights on the finite-dimensional
representations of the Kac Moody algebra. In the case of super Kac-Moody
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conformal algebra the super Kac-Moody conformal Kac-Moody representa-
tions relate naturally also the finite dimensional representations of SO(3)×
Uew(2) × SU(3) labelling finite-dimensional or highest weight Kac Moody
representations.

For Sugawara construction central extension parameter is given by c =
kdimg(G)/(k+h?), where h? is the dual Coxeter number (h? = n for SU(n)
and is non-vanishing in general case and one faces the question whether
super Kac-Moody conformal invariance is gauge symmetry or not. String
model based mass formulas would suggest the super Kac-Moody Virasoro
representations should correspond to a trivial central extension c = 0.

The most general hypothesis is that all values of k and c consistent with
unitarity are possible. Elementary particles would correspond to k = 0, c = 0
and finite-dimensional representations defined by Hamiltonians belonging to
a given representation of SO(3)×SU(3). Anyons could correspond to a non-
vanishing value of k. At configuration space level this would correspond to
an extension of isometry generators obtained by adding an integer multiple
of Hamiltonian as a scalar term to the isometry generator so that the ac-
tion couples together several irreducible representations of SO(3) × SU(3)
corresponding to states with non-vanishing norm.

3.3 Could Super Kac-Moody and conformal algebras act on
radial super-canonical conformal weights as infinitesimal
conformal transformations?

Quantum classical correspondence inspires the hypothesis that super Kac-
Moody algebra and corresponding Virasoro algebra act somehow on the
complex conformal weights ∆ assignable to the functions (rM/r0)∆ of the
radial coordinate rM of δM4± in super-canonical algebra consisting of func-
tions in δM4±×CP2. The following arguments suggest a detailed realization
of this misty idea and provide also a deeper reason why for it.

3.3.1 Basic argument

The basic argument runs as follows.

1. Let us start from the idea that the discrete set of points of the geodesic
sphere S2 of CP2 labelling commuting R-matrices should correspond
to the super-canonical conformal weights ∆ assignable to the func-
tions (rM/r0)∆ of the radial light-like coordinate rM of δM4± in super-
canonical Hamiltonians.
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2. This discrete set of conformal weights should correspond to a discrete
set of points at the partonic 2-surface X2 defined as the intersection
of 3-D light-like causal determinant X3

l defining the orbit of parton
and δM4± × CP2. This selection of a discrete subset of points in the
CP2 projection of X2 would make it possible to realize radial conformal
weights as points of a ”heavenly sphere” defined by the CP2 projection.
A homologically non-trivial geodesic sphere S2 ⊂ CP2 would provide
a natural complex coordinate for the projection with S2 isometries
acting as Möbius transformations for the preferred complex coordinate
z shared by X2 and S2 ⊂ CP2. This assumption is however un-
necessarily strong as will be found.

3. The finite set of points having interpretation as a braid would belong to
a ”time=constant” section of 2-dimensional ”space-time”, presumably
circle, defining physical states of a two-dimensional conformal field
theory for which the scaling operator L0 takes the role of Hamiltonian.

3.3.2 Radial conformal weight as a function of CP2 coordinates

One can criticize the idea of assigning radial conformal weights with CP2

points as an ad hoc procedure. Nothing however prevents of modifying the
original definition of Hamiltonians of δM4± × CP2.

1. One could redefine the configuration space Hamiltonians by assuming
that radial conformal weights ∆ are functions of CP2 coordinates so
that the radial parts of Hamiltonians would be of form (rM/r0)∆(s).

2. For instance, one could have ∆ = ζ−1(ξ1/ξ2), where ξi are complex
CP2 coordinates transforming linearly under group U(2): CP2 itself
parameterizes these coordinate choices. For a given value of r = rM/r0

one should select some branch of the inverse of ζ in this formula.
Branches are in one-one correspondence with zeros of Zeta and they
could be in one-one correspondence with partonic 2-surfaces assignable
to a given 3-surface.

3. One can worry about the non-uniqueness of the selection of preferred
CP2 coordinates. As a matter fact, in its recent form the construction
of configuration space as a union of sub-configuration spaces involves,
not only a selection of the tip of the light cone of M4, but also a
selection of a preferred point of CP2 so that the points of H label
sub-configuration spaces [C8, C1]. The physical interpretation is in
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terms of a geometric correlate for the selection of Cartan algebra of
commuting color charges.

4. The requirement that the Hamiltonian belongs to an algebraic exten-
sion of p-adic numbers forced by the p-adicization constraint would
select a discrete set of points of X2. Thus the discrete spectrum
of conformal weights expressible in terms of zeros of Riemann Zeta
would result from the number theoretical quantization forced by the
p-adicization constraint.

3.3.3 Kac-Moody generators in CP2 degrees of freedom and Vi-
rasoro generators have a natural action on radial conformal
weights

Kac-Moody generators acting in CP2 degrees of freedom as X2-local color
rotations would act on the conformal weights identified as points of CP2.
Also Virasoro generators have a similar action.

1. If the projection of X2 to CP2 is 2-dimensional, the complex coordi-
nate of X2 can be identified as CP2 coordinate so that also conformal
transformations would induce an action in CP2 degrees of freedom and
thus on radial conformal weights.

2. The fact that radial conformal weights define a discrete set on a 1-
dimensional curve, allows the identification with CP2 points even when
the CP2 projection is 1-dimensional and one can restrict conformal
transformations to this line.

3. Since the number of the radial conformal weights is discrete, it is
possible to compensate for the action of the local Kac-Moody genera-
tor on conformal weights by an infinitesimal conformal transformation
expressible as a superposition of Virasoro generators. Both CP2 Kac-
Moody algebra and conformal algebra would act on super-canonical
conformal weights and induce braiding operations naturally.

3.3.4 Why a discrete set of points of partonic 2-surface must be
selected?

As already noticed, p-adicization might provide a deeper motivation for the
selection of discrete subset of points of partonic 2-surface in the construction
of S-matrix elements.
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1. As shown in [C2], the fusion of p-adic variants of TGD with real TGD,
could be possible by algebraic continuation. This however requires the
restriction of n-point functions to a finite set of algebraic points of X2

with the usual stringy formula formula for S-matrix elements involving
an integral over a circle of X2 replaced with a sum over these points.

2. The same universal formula would give not only ordinary S-matrix
elements but also those for p-adic-to-real transitions describing trans-
formation intentions to actions. Quite generally, the formula would
express S-matrix elements for transitions between two arbitrary num-
ber fields as algebraic numbers so that p-adicization of the theory
would become trivial.

3. The interpretation of this finite set of points as braid conforms also
with the fact that the hierarchy of Jones inclusions which defines a
fundamental piece of quantum TGD in its recent form corresponds to
a sequence of inclusions for braids [C7]. What the precise physical
interpretation of this braid hierarchy correlating with the hierarchy of
algebraic extensions of p-adic numbers is, remains to be understood.

What could then be this discrete set of points having interpretation as
a braid?

1. Number theoretical vision suggests that quantum TGD involves the
sequence hyper-octonions → hyper-quaternions→ complex numbers→
reals → finite field G(p, 1) or of its algebraic extension. These re-
ductions would define number theoretical counterparts of dimensional
reductions. The points in the finite field G(p, 1) could be defined by p-
adic integers modulo p so that a connection with p-adic numbers would
emerge. Also more general algebraic extensions of p-adic numbers are
allowed.

2. If the exponents piy for the zeros z = 1/2 + iy of Zeta are algebraic
numbers, the linear combinations for a finite subset of them for a
given algebraic extension of p-adic numbers would naturally represent
preferred points of S2 ⊂ CP2 using the group-theoretically preferred
complex coordinate z of S2. Note that radial coordinate which itself
is expressible in terms of CP2 coordinates when partonic 2-surface
has 2-dimensional CP2 projection, must be rational which poses also
conditions on the allowed set of points.
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3. If the radial conformal weights are expressible in terms of CP2 coor-
dinates, such that for a restriction to S2 ⊂ CP2 one has ∆ = ζ−1(z =
ξ1/ξ2), the basic condition would be that r = rM/r0 is rational and
r∆ belongs to the algebraic extension of p-adic numbers used. The ra-
tionality of rM (z) as function of S2 coordinate z would select a subset
of linear combinations of zeros of Zeta.

3.3.5 What is the fundamental braiding operation?

5. What is the fundamental braiding operation?

The basic quantum dynamics of TGD could define the braiding opera-
tion for the braid defined by a discrete set of points of X2 satisfying the
algebraicity conditions.

1. The complex coordinate z of X2 is defined by the conformal equiva-
lence class of the induced metric of X2 apart from conformal transfor-
mation and positions of punctures are expressed using this coordinate.

2. The selection of the radial coordinate rM defines a rest system and
thus a foliation of M4± by light-cone boundaries parameterized by M4

time coordinate m0 giving the temporal location of the tip of δM4±
along the line rM = 0. This foliation defines also a foliation of the
partonic orbit defined by the light-like 3-surface X3

l by partonic 2-
surfaces X2(m0). Each of these surfaces defines a number theoretic
braid and one expects that the positions of the punctures of braid
expressed using coordinate z evolve most of the time in a continuous
manner so that the braiding flow is well-defined. If one has ∆ =
ζ−1(z1 = ξ1/ξ2) then z1 remains constant during the flow and only
z changes meaning that M4 projection corresponding to z1 changes.
Hence, if M4 projection is 2-dimensional, the braiding flow can be
regarded as a flow defined at M4 projection, which of course conforms
with the physical picture.

3. New points can appear to and old points disappear from the braid
so that a structure more general than a mere braid is in question. It
would not be surprising if the points satisfying algebraicity conditions
disappear or are created in pairs. If this is the case, a tangle like
structure allowing topological particle pair creation and annihilation
would be in question.
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This picture makes sense also for macroscopic 2-surfaces defining outer
boundaries of physical systems (quantum Hall effect and topological quan-
tum computation [E9]).

3.4 Stringy diagrammatics and quantum classical correspon-
dence

One expects that S-matrix can be constructed by generalizing the ordinary
Feynman diagrams in the manner already discussed whereas generalization
of stringy tree diagrams would have different interpretation in TGD frame-
work. This expectation combined with quantum classical correspondence
has some interesting implications.

3.4.1 Vertex operators and configuration space super algebra

Vertex operators are a fundamental notion in conformal field theories and
string models. Quantum classical correspondence suggests that S-matrix
should be expressible in terms of the vertex operators which at the config-
uration space level correspond to the continuations between one- and two-
particle sectors of configuration space. By quantum classical correspondence
the conformal weights of the generators of super-canonical algebra genera-
tors at X3 are mapped to complex points of a two-sphere of CP2 in turn
defining points of X3 and interpreted as punctures of a compactified complex
plane. This picture conforms with the fact that sewing procedure allows to
construct n-point functions for arbitrary 2-topology and with an arbitrary
number of punctures using spheres with 3 punctures as a basic building
block.

One can understand why the number of punctures appearing in vertex
function cannot be larger than three. Three punctures means three complex
super-canonical conformal weights and globally defined conformal transfor-
mations acting on the complex sphere must map this set of punctures to
itself. The group SL(2, C) of Möbius transformations acts as global confor-
mal symmetries of sphere and can indeed map these points to each other.
If the number of points is larger than 3 this is not possible unless the points
satisfy some special symmetries.

Conformal invariance fixes the dependence of 3-vertices 〈Φ(z1)Φ(z2)Φ(z3)〉
on the coordinates zi, which now correspond to super-canonical conformal
weights. What remains is the possibility that the fusion coefficients Ck

lm

appearing in both the product and co-product depend on two light-like co-
ordinates of the space-time sheet complementary to the complex coordinates
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(w,w). The dependence on CP2 coordinates labelling different braiding ma-
trices suggests itself as an additional dependence. One might hope that
the construction of vertices might not differ much from that in conformal
field theories and string models. The most optimistic expectation is that
the theory effectively reduces to a construction of stringy diagrams without
loops.

3.4.2 Delocalization in the space of super-canonical conformal
weights as localization in the imbedding space

The identification of conformal weights as punctures raises the question
how to interpret the propagators 1/L0 appearing in stringy diagrams. The
propagating states are eigen states of the scaling momentum L0 associated
with super Kac-Moody conformal algebra. Therefore the physical states
should be quantum superpositions of states with various complex super-
canonical conformal weights defining two one-dimensional sub-lattices along
lines Re(s) = ±1/2 and (Re(s) < 0, Im(s) = 0). Scaling momentum eigen
states represent Bloch waves in the lattice of punctures analogous to Bloch
waves in a one-dimensional lattice encountered for Bethe ansatz [19] for
integrable lattice models and spin chain models. Bethe ansatz should apply
also now to the construction of states created by configuration space gamma
matrices as eigen-states of super Kac-Moody conformal Virasoro generator
exp(iaL0).

The construction of scalar field propagator as a partition function for the
physical states of super-canonical algebra demonstrates that the introduc-
tion of a hierarchy of y-cutoffs is necessary defined by sub-algebras having
as conformal weights the lattice defined by trivial zeros of zeta and n first
nontrivial zeros s = 1/2+iyi, i = 1, ..., n, of Riemann Zeta. This cutoff hier-
archy is probably related to the hierarchy of type II1 factors of von Neumann
algebras.

In the construction of super-canonical algebra ordinary translations are
replaced by scalings acting on the radial light-like coordinate r associated
with a light-like 3-surface X3

l of M4.

1. The construction of the super-canonical algebra discussed in [B2] demon-
strates also trivial zeros of Zeta correspond naturally to a super-
canonical representation and the generators associated with trivial ze-
ros span together with the generators associated with the non-trivial
zeros an orthogonal basis. As a matter fact, non-trivial zeros corre-
spond to SO(3)- and trivial zeros to SO(2) reduction for the represen-
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tations of the Lorentz group and the appearance of only even integers
corresponds physically to the fact that only even parity excitations
can be assigned to a given particle [B2].

Orthogonality allows also superposition for the imaginary parts of non-
trivial zeros implied by the algebra structure. The most general con-
formal weights are of form
i) s = 2n, n > 0, and
ii) s = n − 1/2 − ∑

i niyi, n ≥ 0, with
∑

i ni = 2N + 1 for even n
and

∑
i ni = 2N for odd n. The states of type ii) with n = 0, 1 form

an orthogonal basis but it is not clear whether orthogonality allows
all values of n. The states of type ii) having n > 1 would naturally
correspond to gauge degrees of freedom obtained via the action of the
Virasoro algebra generators Ln, n ≥ 1. The detailed properties of
the super-canonical generators with weights s = 2n, n > 0, discussed
in [B2, B3] guarantee that they indeed define non-gauge degrees of
freedom.

2. The model for the renormalization group evolution of the scalar field
propagator to be discussed later requires the inclusion of both kinds
of zeros. The least singular propagator results if only the orthogonal
n = 0, 1 states of type ii) are included.

3. p-Adicization requires a scaling momentum cutoff so that super-canonical
operators appearing in a given length scale have conformal weights
above some resolution. Hence one could have a finite lattice deter-
mined by the selection of a lattice generated by a subset of non-trivial
zeros of ζ forced by the necessity of pinary cutoff.

4. The appearance of a one-dimensional lattices would be a direct coun-
terpart for the one-dimensional lattice of strands defining the infi-
nite braid characterizing sub-factors of type II1 for von Neumann al-
gebra. The infinite braids of super-canonical conformal weights at
lines Re(s) = n − 1/2 (n = 0, 1 at least) defined by the points
s = n− 1/2−∑

i niyi, where yi denote of the first K non-trivial zeros
of Riemann Zeta, would correspond to different sub-factor hierarchies
for von Neumann algebras. At the space-time level the hierarchies
would correspond to different angular (or phase) resolutions and the
appearance of the effective non-integer dimensions given by Beraha
numbers labelling unitary representations of Temperley Lieb algebra
would correspond to anomalous dimensions also in space-time sense
[E10].
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Quantum classical correspondence implies a strange duality in which
the localization at the level of configuration space implies delocalization
at the level of space-time. More explicitly, since the eigen-states of the
super-canonical scaling momentum are totally delocalized in the radial co-
ordinate r, the Bloch wave localizes the state with respect to r and thus
both in imbedding and configuration configuration space. Physically the
localization in the scale of 3-surface containing particles is natural. Inside
the 3-surface containing particles however delocalization occurs since for the
induced spinor fields plane waves over punctures mean de-localization at the
level of 3-surface. This is natural since the modes of induced spinor fields
are fixed by the requirement that they are eigen-states of L0.

3.4.3 The zeros of Riemann polyzetas as super-canonical confor-
mal weights of bound or virtual states?

Drinfeld’s associator Φ encountered in monodromy considerations of confor-
mal field theories [18] is expressible in terms of Riemann Zeta and polyzetas
ζ(z1, ..., zn) [21, 22], and this observation [E10] led to a number theoretical
conjecture about the values of ζ and polyzetas at integer valued points (for
the role of polyzetas are discussed in a wider context in [28]).

1. Definition of Polyzetas

Riemann’s polyzeta ζ(z1, ..., zn) is defined via the sum

ζ(z1, ..., zk) =
∑

n1>n2>...>nk≥1

∏

i

n−zi
i (5)

A possible interpretation for the ordering of the integers is in terms of
fermion statistics in the sense that symmetrized polyzetas could represent
a partition function for a system with states labelled by integers. Already
this observation suggests that polyzetas might play some role in physics.

Polyzetas satisfy identities following from their defining representations:
how one can deduced these identities from quantum field theory is discussed
in [22]. For instance, the identity

P2(a, b) ≡ ζ(a, b) + ζ(b, a) = ζ(a)ζ(b)− ζ(a + b) (6)

holds true. An example of a more complex identity holding true for 3-zeta
is
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P3(a1, a2, a3) ≡
∑

P ζ(aP (1), aP (2), aP (3))
=
2ζ(a1 + a2 + a3) + ζ(a1)P2(a2, a3) + ζ(a2)P2(a3, a1) + ζ(a3)P2(a1, a2)

−2ζ(a1)ζ(a2)ζ(a3) .

(7)

Here the subscript P refers to permutations of three objects.

2. Polyzetas and divergences of quantum field theories

Polyzetas ζ(k1, ..., kn) with integer values are found to appear as coef-
ficients of counter terms in quantum field theories. Furthermore, Connes
and Kreimer who worked with the renormalization in quantum field theory
found that the ”forest formula” of Zimmermann can be translated into the
language of Hopf algebras and that the counter terms are proportional to
the values ζ(k1, ..., km) [45].

The question discussed Broadhurst and Kreimer [23] concerns the num-
ber of polyzeta values ζ(k1, ...km) for a given weight

∑m
1 ki = n and depth

m in terms of which one can express all polyzeta values of same weight and
depth using rational coefficients. These generating polyzeta values are called
irreducible. On basis of a numerical work they ended up to several conjec-
tures, one of them being that the number Mn of irreducible polyzeta values
of weight n is coded by the generating function 1−x2−x3 =

∏
n(1−xn)Mn .

They also demonstrated that for 3 ≤ n ≤ 9 Mn enumerates so called positive
knots with n crossings. The results emerged from the study of divergences
of Feynman diagrams of φ4 theory. A rule for assigning knots to Feynman
diagrams allows to predict the level of transcendentality characterized by
Mn associated with the counter term coefficients of a given UV divergent
Feynman diagram.

p-Adicization philosophy inspires the following conjecture about the val-
ues of polyzetas. From ζ(2) = π2/6, and ζ(4) = π4/90, and more general
result ζ(2n) ∝ π2n, one could guess that that the values of polyzetas at the
level K = n are proportional to xπn, where x is a number which belongs
to an extension of rationals defining a finite extension of p-adic numbers
(say combination of algebraic number and root of e). Hence the identities
between polyzetas would make sense for finite extensions of p-adic numbers.
Also Drinfeld’s associator would make sense for these extensions.

3. Do the zeros of polyzetas correspond to the values of off mass shell
super-canonical conformal weights?
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The following considerations lend support to the speculation that Rie-
mann Zeta and polyzetas are deeply related to the basic structure of quan-
tum TGD so that Riemann Hypothesis might have much deeper physical
content than previously thought.

1. The complex conformal weights associated with the super-canonical
algebra could correspond to the zeros of Riemann Zeta or of their
subset.

2. The intermediate particles appearing in stringy tree diagrams could
have off mass shell super canonical conformal weights. This would
make possible braiding during off mass-shell propagation and the in-
terpretation as a time evolution for a braid would make sense. The
zeros of polyzetas forming 2(n− 1)-dimensional surfaces might corre-
spond to conformal weights of intermediate n-particle states appearing
in the generalized Feynman diagrams involving n incoming particles in
interaction. Also conformal weights of particles forming bound states
could satisfy this condition, and one generalize the notion of bound
state energy to that of ”bound state conformal weight”. According to
the proposal of [E10], the braiding of join along boundaries bonds is
the space-time correlate for bound state entanglement. At the level of
configuration the braiding in the space of conformal weights would be
in question.

(a) The symmetrized 2-zeta P2(a1, a2), which might be relevant at
least in the case of identical bosons resulting in the decay a → b+c
or its reversal. The pairs of integers (m, n), m + n = −2k, k > 0
are its trivial zeros as one might expect from the addition of
conformal weights. Since symmetrized n-zeta is expressible in
terms of lower symmetrized poly-zetas the same holds true for
arbitrary number of particles.

(b) In 2-particle intermediate (or bound) state the conformal weights
of interacting particles must belong to a 2-dimensional surface
of non-trivial zeros of P2(a1, a2). Let zi = 1/2 + yi, i = 1, 2
be two non-trivial zeros of ζ. The pairs (a1, a2), where a1 =
1/2+iy1, a2 = z2−z1 so that a1+a2 is zero of ζ, define nontrivial
zeros of P2(a1, a2). A possible interpretation for a2 would be as
a conformal weight of an off mass shell virtual particle resulting
when the intermediate state decays to an on mass shell particle
and virtual particle. The on mass shell decay of the intermediate
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state a → b + c is forbidden by Riemann hypothesis unless one
allows trivial zeros as conformal weights. The conservation of
imaginary part of conformal weight for a+b → c+d by exchange
in t-channel yields (ya, yc) = (yb, yd).

(c) For the symmetrized 3-zeta P3(a1, a2, a3) the zeros define a 4-
dimensional surface. The study of the expression of P3 given
above shows that in this case there are no zeros expressible as
combinations of non-trivial zeros of ζ. The emission of a1 as on-
mass shell particle from the 3-particle intermediate state would
imply that a1 and a1 + a2 + a3 correspond to zeros of ζ. a2 + a3

would be a difference for zeros of ζ. The remaining condition
would be ζ(a2)P2(a1, a3)+ζ(a3)P2(a1, a2) = 0, which allows only
discrete points as solutions for given values of a1 and a2 + a3.
a2 + a3 has interpretation as an intermediate state and could
decay to two on mass shell particles.

4. Does quantum criticality imply the identification of conformal weights
as zeros of polyzetas?

The physical justification for the identification of zeros of polyzetas as
allowed super-canonical conformal weights comes from quantum criticality.

1. Riemann Zeta has interpretation as a partition function [E8]. Also
polyzetas might have a similar interpretation. Partition functions van-
ish at critical points representing phase transitions so that the vanish-
ing of Riemann Zeta for allowed free particle conformal weights is con-
sistent with quantum criticality, and allowed conformal weights would
be analogous to critical temperature.

2. Quantum criticality means the vanishing of loop corrections. The
brave guess is that for given values of super-canonical conformal weights
the loop corrections predicted by TGD are proportional to polyzeta
values just as they are in ordinary quantum field theories. The dif-
ference would be that conformal weights can be complex in the case
of super-canonical algebra. The vanishing of loop corrections at criti-
cality would force the identification of the super-canonical conformal
weights as zeros of polyzetas.

3. The integer valued arguments of polyzetas correlate strongly with the
number of loops correlating in turn with the superficial divergence of
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the Feynman diagram. A multi-loop specialist could probably immedi-
ately tell whether also in quantum field context the integers appearing
as arguments of polyzeta could have an interpretation as conformal
weights. In [22] a simple quantum field theoretical model yielding the
values of polyzetas as vacuum diagrams is constructed, and vacuum
diagrams are given by λn × (gg)2m+1ζ(k1, ..., km). λ has dimension of
inverse length so that the weight n =

∑
i ki indeed appears as a scaling

dimension of the vacuum diagram. The depth m defines the powers of
the coupling constants g and g associated with the vacuum diagram.
Unfortunately this model is purely formal so that one cannot draw
strong conclusions from it.

4 Hopf algebras and ribbon categories as basic
structures

In this section the basic notions related to Hopf algebras and categories are
discussed from TGD point of view. Examples are left to appendix. The new
element is the graphical representation of the axioms leading to the idea
about the equivalent of loop diagrams and tree diagrams based on general
algebraic axioms.

4.1 Hopf algebras and ribbon categories very briefly

An algebraic formulation generalizing braided Hopf algebras and related
structures to what might be called quantum category would involve the re-
placement of the co-product of Hopf algebras with morphism of quantum
category having as its objects the Clifford algebras associated with config-
uration space spinor structure for various 3-topologies. The corresponding
Fock spaces would would define algebra modules and the objects of the cat-
egory would consists of pairs of algebras and corresponding modules. The
underlying primary structure would be second quantized free induced spinor
fields associated with 3-surfaces with various 3-topologies and generalized
conformal structures.

1. Bi-algebras

Bi-algebras have two algebraic operations. Besides ordinary multipli-
cation µ : H ⊗ H → H there is also co-multiplication ∆ : H → H ⊗ H.
Algebra satisfies the associativity axiom (Ass): a(bc) = (ab)c, or more for-
mally, µ(id⊗ µ) = µ(µ⊗ id), and the unit axiom (Un) stating that there is
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morphism η : k → A mapping the unit of A to the unit of field k. Commuta-
tivity axiom (Co) ab = ba translates to µ⊗ τ ≡ µop = µ, where τ permutes
factors in tensor product A⊗A.

∆ satisfies mirror images of these axioms. Co-associativity axiom (Coass)
reads as (∆ ⊗ id)∆ = (id ⊗ ∆)∆, co-unit axiom (Coun) states existence
of morphism ε : k → C mapping the unit of A to that of k, and co-
commutativity (Coco) reads as τ ◦ ∆ ≡ ∆op = ∆. For a bi-algebra H
also additional axioms are satisfied: in particular, ∆ (µ) acts as algebra (bi-
algebra) morphism. When represented graphically, this constraint states
that a box diagram is equivalent to a tree diagram as will be found and
served as the stimulus for the idea that loop diagrams might be equivalent
with tree diagrams.

Left and right algebra modules and algebra representations are defined
in an obvious manner and satisfy associativity and unit axioms. A left co-
module corresponds a pair (V, ∆V ) where the co-action ∆N : V → A ⊗ V
satisfies co-associativity and co-unit axioms. Right co-module is defined in
an analogous manner.

Particle fusion A ⊗ B → C corresponds to µ: A ⊗ B → C = AB. Co-
multiplication ∆ corresponds time reversal C → A⊗B of this process, which
is kind of a time-reversal for multiplication. The generalization would mean
that µ and ∆ become morphisms µ : B ⊗ C → A and ∆ : A → B ⊗ C,
where A,B, C are objects of the quantum category. They could be either
representations of same algebra or even different algebras.

2. Drinfeld’s quantum double

Drinfeld’s quantum double [18, 19] is a braided Hopf algebra obtained by
combining Hopf algebra (H, µ,∆, η, ε, S, R) and its dual H? to a larger Hopf
algebra known as quasi-triangular Hopf algebra satisfying ∆ = R∆opR−1,
where ∆op(a) is obtained by permuting the two tensor factors. Duality
means existence of a scalar product and the two algebras correspond to
Hermitian conjugates of each other.

In TGD framework the physical states associated with these algebras
have opposite energies since in TGD framework antimatter (or matter de-
pending on the phase of matter) corresponds to negative energy states. The
states of the Universe would correspond to states with vanishing conserved
quantum numbers, and in concordance with crossing symmetry, particle re-
actions could be interpreted as transitions generating zero energy states from
vacuum.

The notion of duality [18] is needed to define an inner product and S-
matrix. Essentially Dirac’s bra-ket formalism is in question. The so called
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evaluation map ev : V ⊗V ? → k defined as ev(vi⊗vj) = 〈vi, vj〉 = δij defines
an inner product in any Hopf algebra module. The inverse of this map is the
linear map k → V defined by δv(1) = vi⊗vi. For a tensor category with unit
I, field k is replaced with unit I, and left duality these maps are replaced
with maps bV : I → V ⊗V ? and dV = V ⊗V ? → I. Right duality is defined
in an analogous manner. The map dV assigns to a given zero energy state
S-matrix element. Algebra morphism property bV (ab) = bV (a)bV (b) would
mean that the outcome is essentially the counterpart of free field theory
Feynman diagram. This diagram is convoluted with the S-matrix element
coded to the entanglement coefficients between positive and negative energy
particles of zero energy state.

3. Ribbon algebras and ribbon categories

The so called ribbon algebra [18] is obtained by replacing one-dimensional
strands with ribbons and adding to the algebra the so called twist operation
θ acting as a morphism in algebra and in any algebra module. Twist allows
to introduce the notion of trace, in particular quantum trace.

The thickening of one-dimensional strands to 2-dimensional ribbons is
especially natural in TGD framework, and corresponds to a replacement of
points of time=constant section of 4-surface with one-dimensional curves
along which the S-matrix defined by R-matrix is constant. Ribbon category
is defined in an obvious manner. There is also a more general definition of
ribbon category with objects identified as representations of a given algebra
and allowing morphisms with arbitrary number of incoming and outgoing
strands having interpretation as many-particle vertices in TGD framework.
The notion of quantum category defined as a generalization of a ribbon
category involving the generalization of algebra product and co-product as
morphisms between different objects of the category and allowing objects
to correspond different algebras might catch the essentials of the physics of
TGD Universe.

4.2 Algebras, co-algebras, bi-algebras, and related structures

It is useful to formulate the notions of algebra, co-algebra, bi-algebra, and
Hopf algebra in order to understand how they might help in attempt to for-
mulate more precisely the view about what generalized Feynman diagrams
could mean. Since I am a novice in the field of quantum groups, the defini-
tions to be represented are more or less as such from the book ”Quantum
Groups” of Christian Kassel [18] with some material (such as the construc-
tion of Drinfeld double) taken from [19]. What is new is a graphical rep-
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resentation of algebra axioms and the proposal that algebra and co-algebra
operations have interpretation in terms of generalized Feynman diagrams.

In the following considerations the notation idk for the isomorphism
k → k ⊗ k defined by x → x⊗ x and its inverse will be used.

4.2.1 Algebras

Algebra can be defined as a triple (A,µ, η), where A is a vector space over
field k and µ : A ⊗ A → A and η : k → A are linear maps satisfying the
following axioms (Ass) and (Un).

(Ass): The square

A⊗A⊗A A⊗A

A⊗A A

............................................................... ............
µ⊗ id

............................................................... ............
µ

...................................
...
.........
...id⊗ µ

...................................
...
.........
...µ

(8)

commutes.
(Un): The diagram

k ⊗A A⊗A A⊗ k

A

........................................................................................ ............
η ⊗ id

...........................................................................
id⊗ η................................................................................................................................................................................... ...........

.

∼= .............................................
...
.........
...µ

..................................................................................................................................................................................
.

............
∼=

(9)

commutes. Note that η imbeds field k to A.
(Comm) If algebra is commutative, the triangle

A⊗A A⊗A

A

........................................................................................ ............
τA,A

.............................................................................................. .........
...

µ
...........................................................................................

...
............

µ

(10)

commutes. Here τA,A is the flip switching the factors: τA,A(a⊗ a′) = a′⊗ a.
A morphism of algebras f : (A,µ, η) → (A′, µ′, η′) is a linear map A → A′

such that

µ′ ◦ (f ⊗ f) = f ◦ µ, and f ◦ η = η′ .

A graphical representation of the algebra axioms is obtained by assigning
to the field k a dashed line to be referred as a vacuum line in the sequel and
to A a full line, to η a vertex × at which k-line changes to A-line. The
product µ can be represented as 3-particle vertex in which algebra lines fuse
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together. The three axioms (Ass), (Un) and (Comm) can are expressed
graphically in figure 4.2.1.

Figure 1: Graphical representation for the axioms of algebra. a) a(bc) =
(ab)c, b) ab = ba, c) ka = µ(η(k), a) and ak = µ(a, η(k)).

Note that associativity axiom implies that two tree diagrams not equivalent
as Feynman diagrams are equivalent in the algebraic sense.

4.2.2 Co-algebras

The definition of co-algebra is obtained by systematically reversing the di-
rections of arrows in the previous diagrams.

A co-algebra is a triple(C, ∆, ε), where C is a vector space over field k
and ∆ : C → C ⊗ C and ε : C → k are linear maps satisfying the following
axioms (Coass) and (Coun).

(Coass): The square

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

..................................................... ............∆

..................................................... ............
∆⊗ id

...................................
...
.........
...∆

...................................
...
.........
...id⊗∆

(11)

commutes.
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(Coun): The diagram

k ⊗ C C ⊗ C C ⊗ k

C

....................................................................................................

ε⊗ id
............................................................... ............
id⊗ ε

...................
...................

...................
...................

...................
...................

...................
...................

.......................................

∼= ........
........
........
........
................
............

∆
...................

...................
...................

...................
...................

...................
...................

...................
...........................

............∼=
(12)

commutes. The map ∆ is called co-product or co-multiplication whereas ε
is called the counit. The commutative diagram state that the co-product is
co-associative and that co-unit commutes with co-product.

(Cocomm) If co-algebra is commutative, the triangle

C

C ⊗ C C ⊗ C

..................................................................................................
...
............ ∆

..................................................................................................... .........
...

∆

........................................................................................ ............
τC,C

(13)

commutes. Here τC,C is the flip switching the factors: τC,C(c⊗ c′) = c′ ⊗ c.
A morphism of co-algebras f : (C, ∆, ε) → (C ′,∆′, ε′) is a linear map

C → C ′ such that

(f ⊗ f) ◦∆ = ∆′ ◦ f , and ε = ε′ ◦ f .

It is straightforward to define notions like co-ideal and co-factor algebra
by starting from the notions of ideal and factor algebra. A very useful
notation is Sweedler’s sigma notation for ∆(x), x ∈ C as element of C ⊗C :

∆(x) =
∑

i

x′i ⊗ x′′i ≡
∑

{x}
x′ ⊗ x′′ .

Also co-algebra axioms allow graphical representation. One assigns to
ε a vertex × at which C-line changes to k-line: the interpretation is as an
absorption of a particle by vacuum. The co-product ∆ can be represented
as 3-particle vertex in which C-line decays to two C-lines. The graphical
representation of the three axioms (Coass), (Coun), and (Cocomm) is related
to the representation of algebra axioms by ”time reversal”, that is turning
the diagrams for the algebra axioms upside down (see figure 4.2.2).

4.2.3 Bi-algebras

Consider next a vector space H equipped simultaneously with an algebra
structure (H, µ, η) and a co-algebra structure (H, ∆, ε). There are some
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Figure 2: Graphical representation for the axioms of co-algebra is obtained
by turning the representation for algebra axioms upside down. a) (id ⊗
∆)∆ = (∆⊗ id)∆, b) ∆ = ∆op, c) (ε⊗ id) ◦∆ = (id⊗ ε) ◦∆ = id.

compatibility conditions between these two structures. H ⊗H can be given
the induced structures of a tensor product of algebras and of co-algebras.

The following two statements are equivalent.

1. The maps µ and η are morphisms of co-algebras. For µ this means
that the diagrams

H ⊗H H

(H ⊗H)⊗ (H ⊗H) H ⊗H

............................................................... ............
µ

............................................................... ............
µ⊗ µ

.....................................................................................
...
.........
...

(id⊗ τ ⊗ id)⊗ (∆⊗∆)

.....................................................................................
...
.........
...

∆

(14)

and
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H ⊗H k ⊗ k

H k

................................................................................................................. ............
ε⊗ ε

................................................................................................................. ............ε

.....................................................................................
...
.........
...

µ

.....................................................................................
...
.........
...

id

(15)

commute. For η this means that the diagrams

k H

k ⊗ k H ⊗H

................................................................................................................. ............
η

................................................................................................................. ............
η ⊗ η

.....................................................................................
...
.........
...

id

.....................................................................................
...
.........
...

∆

k H

k

................................................................................................................................................................... ............
η

........................................................................................................................... .........
...

id

........................................................................................................................
...
............

ε

(16)

commute.

2. The maps ∆ and ε are morphisms of algebras.
For ∆ this means that diagrams

H ⊗H (H ⊗H)⊗ (H ⊗H)

H H ⊗H

............................................................... ............
∆⊗∆

............................................................... ............∆

.....................................................................................
...
.........
...

µ

.....................................................................................
...
.........
...

(µ⊗ µ)(id⊗ τ ⊗ id)

(17)

and

k H

k ⊗ k H ⊗H

................................................................................................................. ............
η

................................................................................................................. ............
η ⊗ η

.....................................................................................
...
.........
...

id

.....................................................................................
...
.........
...

∆

(18)

commute.

For ε this means that the diagrams
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H ⊗H k ⊗ k

H k

................................................................................................................. ............
ε⊗ ε

................................................................................................................. ............ε

.....................................................................................
...
.........
...

µ

.....................................................................................
...
.........
...

id

k H

k

................................................................................................................................................................... ............
η

........................................................................................................................... .........
...

id

........................................................................................................................
...
............

ε

(19)

commute. The proof of the theorem involves the comparison of the commu-
tative diagrams expressing both statements to see that they are equivalent.

The theorem inspires the following definition.
Definition: A bi-algebra is a quintuple (H, µ, η,∆, ε), where (H, µ, η) is

an algebra and (H, ∆, ε) is co-algebra satisfying the mutually equivalent con-
ditions of the previous theorem. A morphisms of bi-algebras is a morphism
for the underlying algebra and bi-algebra structures.

An element x ∈ H is known as primitive if one has ∆(x) = 1⊗x + x⊗ 1
and have ε(x) = 0. The subspace of primitive elements is closed with respect
to the commutator [x, y] = xy−yx. Note that for primitive elements µ◦∆ =
2idH holds true so that µ/2 acts as the left inverse of ∆.

Given a vector space V , there exists a unique bi-algebra structure on
the tensor algebra T (V ) such that ∆(v) = 1 ⊗ v + v ⊗ 1 and ε(v) = 0 for
any element v of V . By the symmetry of ∆ this bi-algebra structure is co-
commutative and corresponds to the ”classical limit”. Also the Grassmann
algebra associated with V allows bi-algebra structure defined in the same
manner.

Figure 4.2.3 provides a representation for the axioms of bi-algebra stating
that ∆ and ε act as algebra morphisms of algebra and or equivalent that µ
and η act as co-algebra morphisms. The axiom stating that ∆ (µ) is algebra
(co-algebra) morphism implies that scattering diagrams differing by a box
loop are equivalent. The statement that µ is co-algebra morphism reads
(id⊗µ⊗id)(∆⊗∆) = ∆◦µ whereas the mirror statement ∆(ab) = ∆(a)∆(b)
for ∆ reads as ∆ ◦ µ = µ(∆⊗∆) and gives rise to the same graph.

4.2.4 Hopf algebras

Given an algebra (A,µ, η) and co-algebra (C, ∆, ε), one can define a bilinear
map, the convolution on the vector space Hom(C, A) of linear maps from C
to A. By definition, if f and g are such linear maps, then the convolution
f ? g is the composition of the maps

C C ⊗ C A⊗A A...................................... ............

∆
............................ ............

f ⊗ g
...................................... ............

µ (20)
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Figure 3: Graphical representation for the conditions guaranteing that µ
and η (∆ and ε) act as homomorphisms of co-algebra (algebra). a)(id⊗µ⊗
id)(∆⊗∆) = ∆◦µ, b) ε◦µ = id◦ (ε⊗ ε), c) ∆◦ η = µ⊗◦idk, d) ε◦ η = idk.

Using Sweedler’s sigma notion one has

f ? g(x) =
∑

{x}
f(x′)g(x′′) . (21)

It can be shown that the triple (Hom(C, A), ?, ∆, η ◦ ε) is an algebra and
that the map ΛC,A : A⊗ C? → Hom(C, A) defined as

ΛC,A(a⊗ γ)(c) = γ(c)a

is a morphism of algebras, where C? is the dual of the finite-dimensional
co-algebra C.

For A = C the result gives a mathematical justification for the crossing
symmetry inspired re-interpretation of the unitary S-matrix interpreted usu-
ally as an element of Hom(A,A) as a state generated by element of A⊗A?

from the vacuum |vac〉 = |vacA〉 ⊗ |vacA?〉. This corresponds to the inter-
pretation of the reaction ai|vacA〉 → af |vacA〉 as a transition creating state
ai ⊗ a?

f |vac〉 with vanishing conserved quantum numbers from vacuum.
With these prerequisites one can introduce the notion of Hopf algebra.
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Let (H, µ, η, ∆, ε) be a bi-algebra. An endomorphism S of H is called an
antipode for the bi-algebra H if

S ? idH = idH ? S = η ◦ ε .

A Hopf algebra is a bi-algebra with an antipode. A morphism of a Hopf
algebra is a morphism between the underlying bi-algebras commuting with
the antipodes.

The graphical representation of the antipode axiom is given in the figure
below.

Figure 4: Graphical representation of antipode axiom S ? idH = idH ? S =
η ◦ ε.

The notion of scalar product central for physical applications boils down
to the notion of duality. Duality between Hopf algebras U and H means
the existence of a morphism x → Ψ(x): H → U? defined by a bilinear form
〈u, x〉 = Ψ(x)(u) on U × H, which is a bi-algebra morphism. This means
that the conditions

〈uv, x〉 = 〈u⊗ v, ∆(x)〉 , 〈u, xy〉 = 〈∆(u), x⊗ y〉 ,

〈1, x〉 = ε(x) , 〈u, 1〉 = ε(u) ,

〈S(u), x〉 = 〈u, S(x)〉

(22)

are satisfied. The first condition on multiplication and co-multiplication,
when expressed graphically, states that the decay x → u⊗v can be regarded
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as time reversal for the fusion of u⊗v → x. Second condition has analogous
interpretation.

Figure 5: Graphical representation of the duality condition 〈uv, x〉 = 〈u ⊗
v, ∆(x)〉 .

4.2.5 Modules and comodules

Left and right algebra modules and algebra representations are defined in an
obvious manner and satisfy associativity and unit axioms having diagram-
matic representation similar to that for corresponding algebra axioms.

A left co-module corresponds a pair (V, ∆V ), where the co-action ∆N :
V → C⊗V satisfies co-associativity axiom (idC⊗∆N )◦∆N = (∆⊗idN )◦∆N

and co-unit axiom (ε⊗ id) ◦∆N = idN . A right co-module is defined in an
analogous manner. It is convenient to introduce Sweedlers’s notation for
∆N as ∆N =

∑
{c} xC ⊗ xN .

One can define module and comodule morphisms and tensor product of
modules and co-modules in a rather obvious manner. The module N could
be also algebra, call it A, in which case µA and ηA are assumed to act as
H-comodule morphisms.

The standard example is quantum plane A = M(2)q is the free alge-
bra generated variables x, y subject to to relations yx = qxy and having
coefficients in k. The action of ∆A reads as

∆A

(
x
y

)
=

(
a b
c d

)
⊗

(
x
y

)
.

∆A defines algebra morphism from A to SL(2)q⊗A: ∆a(yx) = ∆A(y)∆A(x) =
q∆A(x)∆A(y) = ∆(qxy).
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4.2.6 Braided bi-algebras

∆op = τH,H ◦ ∆ defines the opposite co-algebra Hop of H. A braided bi-
algebra (H,µ, η,∆, ε) is called quasi-co-commutative (or quasi-triangular) if
there exists an element R of algebra H ⊗H such that for all x ∈ H one has

∆op = R∆R−1 .

One can express R in the form

R =
∑

i

si ⊗ ti .

It is convenient to denote by Rij the R matrix acting in ith and jth tensor
factors of nth tensor power of H. More precisely, Rij can be defined as
an operator acting in an n-fold tensor power of H by the formula Rij =
y(1) ⊗ y(2) ⊗ ... ⊗ y(p), p ≤ n, y(ki) = si and y(kj) = tj , y(k) = 1 otherwise.
For instance, one has R13 =

∑
i si ⊗ 1⊗ ti.

With these prerequisites one can define a braided bi-algebra as a quasi-
commutative bi-algebra (H, µ, η,∆, ε, S, S−1, R) as an algebra with a pre-
ferred element R ∈ H ⊗H satisfying the two relations

(∆⊗ idH)(R) = R13R23 ,

(idH ⊗∆)(R) = R13R12 .

(23)

Braided bi-algebras, known also as quasi-triangular bi-algebras, are central
in the theory of quantum groups, R-matrices, and braid groups. By a direct
calculations one can verify the following relations.

1. Yang-Baxter equations

R12R13R23 = R23R13R12 , (24)

and the relation

(ε⊗ idH)(R) = 1 (25)

hold true.
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2. Since H has an invertible antipode S, one has

(S ⊗ idH)(R) = R−1 = (idH ⊗ S−1)(R) ,

(S ⊗ S)(R) = R . (26)

The graphical representation of the Yang-Baxter equation in terms of
the relations of braid group generators is given in the figure 4.2.6.

Figure 6: Graphical representation of Yang-Baxter equation R12R13R23 =
R23R13R12.

4.2.7 Ribbon algebras

Let H be a braided Hopf algebra with a universal matrix R =
∑

i si ⊗
ti and set u =

∑
i S(ti)si. It can be shown that u is invertible with the

inverse u−1 =
∑

siS
2(ti) and that uS(u) = S(u)u is central element in

H. Furthermore, one has ε(u) = 1 and ∆(u) = (R21R)−1(u ⊗ u), and the
antipode is given for any x ∈ H by S2(x) = uxu−1.

Ribbon algebra has besides R ∈ H ⊗H also a second preferred element
called θ. A braided Hopf algebra is called ribbon algebra if there exists a
central element θ of H satisfying the relations

∆(θ) = (R21R)−1(θ ⊗ θ) , ε(θ) = 1 , S(θ) = θ . (27)
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It can be shown that θ2 acts like S(u)u on any finite-dimensional module
[18].

4.2.8 Drinfeld’s quantum double

Drinfeld’s quantum double construction allows to build a quasi-triangular
Hopf algebra by starting from any Hopf algebra H and its dual H?, which
exists in a finite-dimensional case always, and as a vector space is isomorphic
with H. Besides duality normal ordering is second ingredient of the con-
struction. Physically the generators of the algebra and its dual correspond
to creation and annihilation operator type operators. Drinfeld’s quantum
double construction is represented in a very general manner in [18]. A con-
struction easier to understand by a physicist is discussed in [19]. For this
reason this representation is summarized here although the style differs from
the representation of [18] followed in the other parts of appendices.

Consider first what is known.

1. Duality means the existence of basis {ea} for H and {ea} for H? and
inner product (or evaluation as it is called in [18]) ev : H? ⊗H → k
defined as ev(eaeb) ≡ 〈ea, eb〉 = δa

b and its inverse δ : k → H? ⊗ H
defined by δ(1) = eaea. One can extend the inner product to an inner
product in the tensor product (H? ⊗ H?) ⊗ (H ⊗ H) in an obvious
manner.

2. The product (co-product) in H (H?) coincides with the co-product
(product) in H? (H) in the sense that one has

〈ec, eaeb〉 = mc
ab = 〈∆(ec), eb ⊗ ea〉 ,

〈eaeb, ec〉 = µab
c = 〈ea ⊗ eb, ∆(ec)〉 ,

(28)

These equations are quite general expressions for the duality expressed
graphically in figure 4.2.4.

3. The antipodes S for H and H? can be represented as matrices

SH(ea) = S b
a eb , SH?(ea) = (S−1)a

be
b . (29)

The task is to construct algebra product µ and co-algebra product ∆, unit η
and co-unit ε, antipode, and R-matrix R for for H ⊗H?. The natural basis
for H ⊗H? consists of ea ⊗ eb.
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1. Co-product ∆ is simply the product of co-products

∆(eae
b) = ∆(ea)∆(eb) = mb

vuµcd
a ece

u ⊗ ede
v . (30)

2. Product µ involves normal ordering prescription allowing to transform
products eaeb (elements of H?⊗H) to combinations of basis elements
eae

b (elements of H ⊗ H?. This map must be consistent with the
requirement that co-product acts as an algebra morphism. Drinfeld’s
normal ordering prescription, or rather a map cH?,H : H? ⊗ H →
H ⊗H? is given by

cH?,H(eaeb) = Rac
bdece

d , Rac
bd = mx

kdm
a
xuµvy

b µck
y (S−1)u

vece
d . (31)

The details of the formula are far from being obvious: the axioms
of tensor category with duality to be discussed later might allow to
relate RH?,H to RH,H and this might help to understand the origin
of the expression. Normal ordering map can be interpreted as braid
operation exchanging H and H? and the matrix defining the map could
be regarded as R-matrix RH⊗H? .

3. The universal R-matrix is given by

R = (ea ⊗ idH?)⊗ (idH ⊗ ea) , (32)

where the summation convention is applied. One can show that R∆ =
∆opR by a direct calculation.

4. The antipode SH⊗H? follows from the product of antipodes for H
and H? using the fact that antipode is antihomomorphism using the
normal ordering prescription

SH⊗H?(eae
b) = cH?,H(S(eb)S(ea)) . (33)
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4.2.9 Quasi-Hopf algebras and Drinfeld associator

Braided Hopf algebras are quasi-commutative in the sense that one has
∆op = R∆R−1. Also the strict co-associativity can be given up and this
means that one has

(∆⊗ id)∆ = Φ(id⊗∆)Φ−1 , (34)

where Φ ∈ H ⊗H ⊗H is known as Drinfeld’s associator and appears in the
of conformal fields theories. If the resulting structure satisfies also the so
called Pentagon Axiom (to be discussed later, see Eq. 45 and figure 4.3.2),
it is called quasi-Hopf algebra. Pentagon Axiom boils down to the condition

(id⊗ id⊗∆)(Φ)(∆⊗ id⊗ id)(Φ) = (id⊗ Φ)(id⊗ id⊗∆)(Φ)(Φ⊗ id) .(35)

The Yang-Baxter equation for quasi-Hopf algebra reads as

R12Φ312R13Φ−1
1322R23Φ123 = Φ321R23Φ−1

231R13Φ213R12Φ123 . (36)

The left-hand side arises from a sequence of transformations

(12)3 1(23) 1(32) (31)2 3(12) 3(12) 3(21)............................................................... ............
Φ123 ............................................................... ............

R23 .......................................................... ............
Φ−1

132 .......................................................... ............
R13 .......................................................... ............

Φ312 .......................................................... ............
R12

. (37)

The right-hand side arises from the sequence

(12)3 (21)3 2(13) 2(31) (23)1 (32)1 3(21)............................................................... ............
R12 ............................................................... ............

Φ213 .......................................................... ............
R13 .......................................................... ............

Φ−1
231 .......................................................... ............

R23 .......................................................... ............
Φ321

. (38)

One can produce new quasi-Hopf algebras by gauge (or twist) transfor-
mations using invertible element Ω ∈ H ⊗H called twist operator

∆(a) → Ω∆(a)Ω−1 ,

Φ → Ω23(id⊗∆)(Ω)Φ(∆⊗ id)(Ω−1)Ω−1
12 ,

R → ΩRΩ−1 . (39)

Quasi-Hopf algebras appear in conformal field theories and correspond
quantum universal enveloping algebras divided by their centralizer. Consider
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as an example the R-matrix Rj1,j2 relating j1⊗j2 and j2⊗j1 representations
∆j1,j2(a) and ∆j2,j1(a) of the co-product ∆ of U(sl(2))q. ∆j,j(a) commutes
with Rjj for all elements of the quantum group. The action of gi = qRjj

acting in ith and (i+1)th tensor factors extends to the representation (Vj)×n

in an obvious manner. From the Yang-Baxter equation it follows that the
operators gi define a representation of braid group Bn:

gigi+1gi = gi+1gigi+1 ,

gigj = gjgi , for |j − k| ≥ 2 . (40)

Under certain conditions the braid group generators generate the whole
centralizer Cn

q for the representation of quantum group. For instance, this
occurs for j = 1/2. In this case the additional condition

g2
i = (q2 − 1)gi + q2 × 1 , (41)

so that the centralizer is isomorphic with the Hecke algebra Hn(q), which
can be regarded as a q-deformation of permutation group Sn.

The result generalizes. In Wess-Zumino-Witten model based on group G
the relevant algebraic structure is U(Gq)/Cn(q). This is quasi-Hopf algebra
and the so called Drinfeld associator characterizes the quasi-associativity.

4.3 Tensor categories

Hopf algebras and related structures do not seem to be quite enough in order
to formulate elegantly the construction of S-matrix in TGD framework. A
more general structure known as a braided tensor category with left duality
and twist operation making the category to a ribbon category is needed.
The algebra product µ and co-product ∆ must be generalized so that they
appear as morphisms µA⊗B→C and ∆A→B⊗C : this gives hopes of describing
3-vertices algebraically. It is not clear whether one can assume single under-
lying algebra so that objects would correspond to different representations
of this algebra or whether one allow even non-isomorphic algebras.

In the tensor category the tensor products of objects and corresponding
morphisms belong to the category. In a braided category the objects U ⊗V
and V ⊗ U are related by a braiding morphism. The notion of braided
tensor category appears naturally in topological and conformal quantum
field theories and seems to be an appropriate tool also in TGD context. The
basic category theoretical notions are discussed in [18] and I have already
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earlier considered category theory as a possible tool in the construction of
quantum TGD and TGD inspired theory of consciousness [E7].

In braided tensor categories one introduces the braiding morphism cV,W :
V ⊗W → W⊗V , which is closely related to R-matrix. In categories allowing
duality arrows with both directions are allowed ad diagrams analogous to
pair creation from vacuum are possible. In ribbon categories one introduces
also the twist operation θV as a morphism of object and the ΘW satisfies the
axiom: θV⊗W = (θV⊗θW )cW,V cV,W . One can also introduce morphisms with
arbitrary number of incoming lines and outgoing lines and visualize them
as boxes, coupons. Isotopy principle, originally related to link and knot
diagrams provides a powerful tool allowing to interpret the basic axioms
of ribbon categories in terms of isotopy invariance of the diagrams and to
invent theorems by just isotoping.

4.3.1 Categories, functors, natural transformations

Categories [42, 43, 44, 18] are roughly collections of objects A, B, C... and
morphisms f(A → B) between objects A and B such that decomposition
of two morphisms is always defined. Identity morphisms map objects to
objects. Examples of categories are open sets of some topological spaces
with continuous maps between them acting as morphisms, linear spaces
with linear maps between them acting as morphisms, groups with group
homomorphisms taking the role of morphisms. Practically any collection of
mathematical structures can be regarded as a category. Morphisms can be
very general: for instance, partial ordering a ≤ b can define a morphism
f(A → B).

Functors between categories map objects to objects and morphisms to
morphisms so that a product of morphisms is mapped to the product of the
images and identity morphism is mapped to identity morphism. Functor
F : C → D commutes also with the maps s and b assigning to a morphism
f : V → W its source s(f) = V and target b(f) = W .

A natural transformation between functors F and G from C → C′ is a
family of morphisms η(V ) : F (V ) → G(V ) in C′ indexed by objects V of C
such that for any morphisms f : V → W in C, the square

F (V ) G(V )

F (W ) G(W )

............................................................... ............
η(V )

............................................................... ............
η(W )

...................................
...
.........
...F (f)

...................................
...
.........
...G(f)

(42)

commutes.
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The functor F : C → D is said to be equivalence of categories if there
exists a functor G : D → C such and natural isomorphisms

η : idD → FG and θ : GF → idCFG .

The notion of adjoint functor is a more general notion than equivalence of
categories. In this case η and θ are natural transformations but not necessary
natural isomorphisms in such a manner that the composite maps

F (V ) (FGF )(V ) F (V )

G(W ) (GFG)(W ) G(W )

............................................................... ............
η(F (V ))

............................................................... ............
F (θ(V ))

............................................................... ............
G(η(W ))

............................................................... ............
θ(G(W )))

(43)

are identify morphisms for all objects V in C and W in D.
The product C = AB for objects of categories is defined by the require-

ment that there exist projection morphisms πA and πB from C to A and B
and that for any object D and pair of morphisms f(D → A) and g(D → B)
there exist morphism h(D → C) such that one has f = πAh and g = πBh.
Graphically this corresponds to a square diagram in which pairs A,B and
C,D correspond to the pairs formed by opposite vertices of the square and
arrows DA and DB correspond to morphisms f and g, arrows CA and CB to
the morphisms πA and πB and the arrow h to the diagonal DC. Examples
of product categories are Cartesian products of topological spaces, linear
spaces, differentiable manifolds, groups, etc. The tensor products of linear
spaces and algebras provides an especially interesting example of product
in the recent case. One can define also more advanced concepts such as
limits and inverse limits. Also the notions of sheafs, presheafs, and topos
are important.

4.3.2 Tensor categories

Let C be a category. Tensor product ⊗ is a functor from C × C to C if

1. there is an object V ⊗W associated with any pair (V, W ) of objects
of C

2. there is an morphism f⊗g associated with any pair (f, g) of morphisms
of C such that

s(f ⊗ g) = s(f)⊗ s(g) and b(f ⊗ g) = b(f)⊗ b(g),
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3. if f ′ and g′ are morphisms such that s(f ′) = b(f) and s(g′) = b(g)
then

(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ ◦ f)⊗ (g′ ◦ g) ,

4. idV⊗W = idW⊗V .

Any functor with these properties is called tensor product. The tensor
product of vector spaces provides the most familiar example of a tensor
product functor.

In figure 4 the general rules for graphical representations of morphisms
are given.

Figure 7: The graphical representation of morphisms. a) g ◦ f : V → W , b)
f ⊗ g, c) f : U1 ⊗ ...⊗ Um → V1 ⊗ ....⊗ Vn.

An associativity constraint for the tensor product is a natural isomor-
phism

a : ⊗(⊗× id) → ⊗(id×⊗) .

On basis of general definition of natural isomorphisms (see Eq. 42) one
can conclude that for any triple (U, V, W ) of objects of C there exists an
isomorphism

(U ⊗ V )⊗W U ⊗ (V ⊗W )

(U ′ ⊗ V ′)⊗W ′ U ′ ⊗ (V ′ ⊗W ′)

...................................... ............
aU,V,W

........................................................................................ ............
aU ′,V ′,W ′

..............................................................................................................
...
.........
...

(f ⊗ g)⊗ h

..............................................................................................................
...
.........
...

f ⊗ (g ⊗ h)

(44)
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Associativity constraints satisfies Pentagon Axiom [18] if the following
diagrams commutes.

U ⊗ (V ⊗W )⊗X ((U ⊗ V )⊗W ))⊗X

U ⊗ ((V ⊗W )⊗X) U ⊗ (V ⊗ (W ⊗X))

(U ⊗ V )⊗ (W ⊗X)

...........................................................................

aU,V,W ⊗ idX

............................................................... ............
idU ⊗ aV,W,X

....................................................................................................................................................................................................................................................................
...
.........
...

aU,V⊗W,X

..............................................................................................................
...
.........
...

aU⊗V,W,X

..............................................................................................................
...
.........
...

aU,V,W⊗X

(45)

Pentagon axiom has been already mentioned while discussing the definition
of quasi-Hopf algebras. In figure 4.3.2 are graphical illustrations of asso-
ciativity morphism a(U, V, W ), Triangle Axiom, and Pentagon Axiom are
given.

Assume that an object I is fixed in the category. A left unit constraint
with respect to I is a natural isomorphism

l : ⊗(I × id) → id

By Eq. 42 this means that for any object V of C there exists an isomor-
phism

lV : I ⊗ V → V (46)

such that

I ⊗ V V

I ⊗ V ′ V ′

............................................................... ............
lV

............................................................... ............
lV ′

...................................
...
.........
...idI ⊗ f

...................................
...
.........
...f

(47)

The right unit constraint r : ⊗(id× I) → id can be defined in a completely
analogous manner.

Given an associativity constraint a, and left and right unit constraints
l, r with respect to an object I, one can say that the Triangle Axiom is
satisfies if the triangle
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Figure 8: Graphical representations of a) the associativity isomorphism
aU,V,W , b) Triangle Axiom, c) Pentagon Axiom.

(V ⊗ I)⊗W V ⊗ (I ⊗W )

V ⊗W

............................................................... ............
aV,I,W

.................................................................................................................................... ...........
.

rV ⊗ idW
...................................................................................................................................

.
............ idW ⊗ lW

(48)

commutes (see figure 4.3.3).
These ingredients lead allow to define tensor category (C, I, a, l, r) as a

category C which is equipped with a tensor product ⊗ : C×C → C satisfying
associativity constraint a, left unit constraint l and right unit constraint
r with respect to I, such that Pentagon Axiom and Triangle Axiom are
satisfied.

The definition of a tensor functor F : C → D involves also additional
isomorphisms. φ0 : I → F (I) satisfies commutative diagrams involving
right and left unit constraints l and r. The family of isomorphisms
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φ2(U, V ) : F (U)⊗ F (V ) → F (U ⊗ V )

satisfies a commutative diagram stating that φ2 commutes with associativ-
ity constraints. The interested reader can consult [18] for details. One can
also define the notions of natural tensor transformation, natural tensor iso-
morphism, and tensor equivalence between tensor categories by applying the
general category theoretical tools.

Keeping track of associativity isomorphisms is obviously a rather heavy
burden. Fortunately, it can be shown that one can assign to a tensor category
C a strictly associative (or briefly, strict) tensor category which is tensor
equivalent of C.

4.3.3 Braided tensor categories

Braided tensor categories satisfy also commutativity constraint c besides
associativity constraint a. Denote by τ : C×C → C×C the flip functor defined
by τ(V, W ) = (W,V ). Commutativity constraint is a natural isomorphism

c : ⊗ → ⊗τ .

This means that for any pair (V, W ) of objects there exists isomorphism

cV,W : V ⊗W → W ⊗ V

such that the square

V ⊗W W ⊗ V

V ′ ⊗W ′ W ′ ⊗ V ′

............................................................... ............
cV,W

............................................................... ............
cV ′,W ′

...................................
...
.........
...f ⊗ g

...................................
...
.........
...g ⊗ f

(49)

commutes.
The commutativity constraint satisfies Hexagon Axiom if the two hexag-

onal diagrams

(H1)
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U ⊗ (V ⊗W ) (V ⊗W )⊗ U

(U ⊗ V )⊗W V ⊗ (W ⊗ U)

(V ⊗ U)⊗W V ⊗ (U ⊗W )

..................................................................................................................................................................................................................... ............
cU,V⊗W

..................................................................................................................................................................................................................... ............
aV,U,W

........
........
........
........
........
........
........
........
........
........
........
........
........
................
............

aU,V,W

........................................................................................................................ ........
....

aV,W,U

........................................................................................................................ ........
....

cU,V ⊗ idW

........
........
........
........
........
........
........
........
........
........
........
........
........
................
............

idV ⊗ cU,W

(50)

and (H2)

(U ⊗ V )⊗W W ⊗ (U ⊗ V )

U ⊗ (V ⊗W ) (W ⊗ U)⊗ V

U ⊗ (W ⊗ V ) (U ⊗W )⊗ V

..................................................................................................................................................................................................................... ............
cU⊗V,W

..................................................................................................................................................................................................................... ............
a−1

U,W,V

........
........
........
........
........
........
........
........
........
........
........
........
........
................
............

a−1
U,V,W

........................................................................................................................ ........
....

a−1
W,U,V

........................................................................................................................ ........
....

idU ⊗ cV,W

........
........
........
........
........
........
........
........
........
........
........
........
........
................
............

cU,W ⊗ idV

(51)

commute.
The braiding operation cV,W and the association operation a(U, V, W ),

and pentagon and hexagon axioms are illustrated in the figure 4.3.3 below.

4.3.4 Duality and tensor categories

The notion of a dual of the finite-dimensional vector space as a space of
linear maps from V to field k can lifted to a concept applying for tensor
category. A strict (strictly associative) tensor category (C,⊗, I) with unit
object I is said to possess left duality if for each object V of C there exists
an object V ? and morphisms

bV : I → V ⊗ V ? and dV : V ? ⊗ V → I

such that
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Figure 9: Graphical representations a) of the braiding morphism cV,W and
its inverse c−1

V,W , b) of naturality of cV,W , c) of First Hexagon Axiom.

(id⊗ dV )(bV ⊗ idV ) = idV and (dV ⊗ idV ?)(idV ? ⊗ bV ) = idV ? . (52)

One can define the transpose of f in terms of bV and dV . The idea how this
is achieved is obvious from figure 4.3.4.

f? = (dV ⊗ idU?)(idV ? ⊗ f ⊗ idU?)(idV ? ⊗ bU ) . (53)

Also the braiding operation cV ?,W can be expressed in terms of c−1
V,W , bV

and dV by using the isotopy of Fig. 4.3.4:

cV ?,W = (dV ⊗ idW⊗V ?)(idV ? ⊗ c−1
V,W ⊗ idV ?)(idV ?⊗W ⊗ bV ) . (54)

Drinfeld quantum double can be regarded as a tensor product of Hopf
algebra and its dual and in this case one can introduce morphisms evH :
H ⊗H? → k defined as ei ⊗ ej → δi

j defining inner product and its inverse
δ : k → H ⊗H defined as 1 → eiei, where summation over i is understood.
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For categories these morphisms are generalized to morphism dV from objects
V of category to unit object I and bV from I to object of category. The
elements of H and H? are described as strands with opposite directions,
whereas dV and bV correspond to annihilation and creation of strand–anti-
strand pair as show in figure 4.3.4.

Figure 10: Graphical representations a) of the morphisms bV and dV , b) of
the transpose f?, c) of braiding operation cV ?,W expressed in terms of cV,W .

4.3.5 Ribbon categories

According to the definition of [18] ribbon category is a strict braided tensor
category (C,⊗, I) with a left duality with a family of natural morphisms
θV : V → V indexed by the objects V of C satisfying the conditions

θV⊗W = θV ⊗ θW cW,V cV,W ,

θV ? = (θV )? (55)

for all objects V,W of C. The naturality of twist means for for any mor-
phisms f : V → W one has θW f = fθV . The graphical representation for
the axioms and is in Fig. 4.3.5.
The existence of the twist operation provides C with right duality necessary
in order to define trace (see Fig. 4.3.5).

d′V = (idV ? ⊗ θV )cV,V ?bV ,

b′V = dV cV,V ?(θV ⊗ idV ?) . (56)

One can define quantum trace for any endomorphisms f of ribbon category:

trq(f) = d′V (f ⊗ idV ?)bV = dV cV,V ?(θV f ⊗ idV ?)bV . (57)
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Figure 11: Graphical representations a) of θV⊗W = θV ⊗ θW cW,V cV,W , b) of
θV ? = (θV )?, c) of θW f = fθV , d) of right duality for a ribbon category.

Again the graphical representation is the best manner to understand the
definition, see figure 4.3.5. Quantum trace has the basic properties of trace:
trq(fg) = trq(gf), trq(f ⊗ g) = trq(f)trq(g), trq(f) = trq(f?). The proof of
these properties is easiest using isotropy principle.

Figure 12: Graphical representations of a) trq(f), b) of trq(fg) = trq(gf),
c) of tr(f ⊗ g) = tr(f)tr(g).

The quantum dimension of an object V of ribbon category can be defined
as the quantum trace for the identity morphism of V : dimq(V ) = trq(idV ) =
d′V bV . Quantum dimension is represented as a vacuum bubble. Quantum
dimension satisfies the conditions dimq(V ⊗ W ) = dimq(V )dimq(W ) and
dimq(V ) = dimq(V ?).

A more general definition of ribbon category inspired by the considera-
tions of [19] is obtained by allowing the generalization of morphisms µ and
∆ so that they become morphisms µA⊗B→C and ∆C→A⊗B of ribbon cate-
gory. Graphically the general morphism with arbitrary number of incoming
outgoing strands can be represented as a box or ”coupon”. An important
special case of ribbon categories consists of modules over braided Hopf al-
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gebras allowing ribbon algebra structure.

5 Axiomatic approach to S-matrix based on the
notion of quantum category

This section can be regarded as an attempt of a physicists with some good
intuitions and intentions but rather poor algebraic skills to formulate basic
axioms about S-matrix in terms of what might be called quantum category.
The basic result is an interpretation for the equivalence of loop diagrams
with tree diagrams as a consequence of basic algebra and co-algebra axioms
generalized to the level of tensor category. The notion of quantum category
emerges naturally as a generalization of ribbon category, when algebra prod-
uct and co-algebra product are interpreted as morphisms between different
objects of the ribbon category.

The general picture suggest that the operations ∆ and µ generalized to
algebra homomorphisms A → B ⊗ C and A ⊗ B → C in a tensor category
whose objects are either representations of an algebra or even algebras might
provide an appropriate mathematical tool for saying something interesting
about S-matrix in TGD Universe. These algebras need not necessarily be
bi-algebras. In the following it is demonstrated that the equivalence of
loop diagrams to tree diagrams follows from suitably generalized bi-algebra
axioms. Also the interpretation of various morphisms involved with Hopf
algebra structure is discussed.

5.1 ∆ and µ and the axioms eliminating loops

The first task is to find a physical interpretation for the basic algebraic
operations and how the basic algebra axioms might allow to eliminate loops.
The physical interpretation of morphisms ∆ and µ as algebra or category
morphisms has been already discussed. As already found, the condition that
∆ (µ) acts as an algebra (co-algebra) morphism leads to a condition stating
that a box graph for 2-particle scattering is equivalent with tree graph. It is
interesting to identify the corresponding conditions in the case of self energy
loops and vertex corrections.

The condition

µB⊗C→A ◦∆A→B⊗C = K × idA , (58)

where K is a numerical factor, is a natural additional condition stating that
a line with a self energy loop is equivalent with a line without the loop. The

73



condition is illustrate in figure 5.1. For the co-commutative tensor algebra
T (V ) of vector space with ∆(x) = 1⊗ x + x⊗ 1 one would have K = 2 for
the generators of T (V ). For a product of n generators one has K = 2n.

Figure 13: Graphical representations for the conditions a) (id⊗µ⊗ id)(∆⊗
∆) = ∆◦µ, b) µB⊗C→A◦∆A→B⊗C = K×idA, and c) (µ⊗id)◦(∆⊗id)◦∆ =
K ×∆.

The condition ∆A→B⊗C ◦ µB⊗C→A = K × idA cannot hold true since
multiplication is not an irreversible process. If this were the case one could
reduce tree diagrams to collections of free propagator lines.

In quantum field theories also vertex corrections are a source of diver-
gences. The requirement that the graph representing a vertex correction is
equivalent with a simple tree graph representing a decay gives an additional
algebraic condition. For bi-algebras the condition would read

(µ⊗ id) ◦ (∆⊗ id) ◦∆ = K∆ , (59)

where K is a simple multiplicative factor. In fact, for the co-commutative
tensor algebra T (V ) of vector space the left hand side would be 3 × ∆(x)
giving K = 3 for generators T (V ). The condition is illustrated in figure 5.1.

Using the standard formulas of appendix for quantum groups one finds
that in the case of Uq(sl(2)) the condition µ ◦ ∆(X) = KXX, KX con-
stant, is not true in general. Rather, one has µ ◦ ∆(X) = XKX(qH/2 +
q−H/2, q1/2, q−1/2). The action on the vacuum state is however propor-
tional to that of X, being given by KX(2, 1, 1)X. The function KX for
a given X can be deduced from µ ◦ ∆(X±) = qH/2X± + X±q−H/2 =
X±(q±1/2 + qH/2 + q−H/2). The eigen states of Cartan algebra generators
are expected to be eigen states of µ◦∆ also in the case of a general quantum
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group. µ◦∆ is analogous to a single particle operator like kinetic energy and
its action on multi-particle state is a sum over all tensor factors with µ ◦∆
applied to each of them. For eigen states of µ ◦∆ the projective equivalence
of loop diagrams with tree diagrams would make sense.

Since self energy loops, vertex corrections, and box diagrams represent
the basic divergences of renormalizable quantum field theories, these axioms
raise the hope that the basic infinities of quantum field theories could be
eliminated by the basic axioms for the morphisms of quantum category.

There are also morphisms related to the topology changes in which the
3-surface remains connected. For instance, processes in which the number of
boundary components can change could be of special relevance if the family
replication phenomenon reduces to the boundary topology. Also 3-topology
can change. The experience with topological quantum field theories [34],
stimulates the hope that the braid group representations of the topological
invariants of 3-topology might be of help in the construction of S-matrix.

The equivalence of loop diagrams with tree diagrams must have alge-
braic formulation using the language of standard quantum field theory. In
the third section it was indeed found that thanks to the presence of the
emission of vacuons, the equivalence of loop diagrams with tree diagrams
corresponds to the vanishing of loop corrections in the standard quantum
field theory framework. Furthermore, the non-cocommutative Hopf alge-
bra of Feynman diagrams discussed in [45] becomes co-commutative when
the loop corrections vanish so that TGD program indeed has an elegant
algebraic formulation also in the standard framework.

5.2 The physical interpretation of non-trivial braiding and
quasi-associativity

The exchange of the tensor factors by braiding could also correspond to
a physically non-trivial but unitary operation as it indeed does in anyon
physics [46, 47]. What would differentiate between elementary particles and
anyons would be the non-triviality of the super-canonical and Super Kac-
Moody conformal central extensions which have the same origin (addition
of a multiplication by a multiple of the Hamiltonian of a canonical transfor-
mation to the action of isometry generator). The proposed interpretation
of braiding acting in the complex plane in which the conformal weights of
the elements of the super-canonical algebra represent punctures justifies the
non-triviality. Hexagon Axioms would state that two generalized Feynman
diagrams involving exchanges, dissociations and re-associations are equiva-
lent.
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An interesting question is whether the association (A, B) → (A ⊗ B)
could be interpreted as a formation of bound state entanglement between A
and B. A possible space-time correlate for association is topological conden-
sation of A and B to the same space-time sheet. Association would be trivial
if all particles are at same space-time sheet X4 but non-trivial if some subset
of particles condense at an intermediate space-time sheet Y 4 condensing in
turn at X4.

Be as it may, association isomorphisms aA,B,C would state that the state
space obtained by binding A with bound bound states (B ⊗ C) is unitarily
related with the state space obtained by binding (A ⊗ B) bound states
with C. With this interpretation Pentagon axiom would state that two
generalized Feynman diagrams depicted in figure 4.3.2 leading from initial
to final to final state by dissociation and reassociation are equivalent.

5.3 Generalizing the notion of bi-algebra structures at the
level of configuration space

Configuration space of 3-surfaces decomposes into sectors corresponding to
different 3-topologies. Also other signatures might be involved and I have
proposed that the sectors are characterized by the collection of p-adic primes
labelling space-time sheets of the 3-surface and that a given space-time sur-
face could be characterized by an infinite prime or integer. The general
problem is to continue various geometric structures from a given sector A
of configuration space to other sector B.

An especially interesting special case corresponds to a continuation from
1-particle sector to two-particle sector or vice versa and corresponds to TGD
variant of 3-vertex. All these continuations involve the imbedding of a struc-
ture associated with the sector A to a structure associated with sector B.
For the continuation from 1-particle sector to 2-particle sector the map is
analogous to co-algebra homomorphism ∆. For the reverse continuation it
is analogous to the algebra product µ. Now however one does not have maps
∆ : A → A⊗A and µ : A⊗A → A but ∆ : A → B ⊗C and µ : B ⊗C → A
unless the algebras are isomorphic. µ ◦∆ = id should hold true as an addi-
tional condition but ∆ ◦ µ = id cannot hold true since product maps many
pairs to the same element.

5.3.1 Continuation of the configuration space spinor structure

The basic example of a structure to be continued is configuration space
spinor structure. Configuration space spinor fields in different sectors should
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be related to each other. The isometry generators and gamma matrices of
configuration space span a super-canonical algebra. The continuation re-
quires that the super algebra basis of different sectors are related. Also
vacua must be related. Isometry generators correspond to bosonic genera-
tors of the super-canonical algebra. There is also a natural extension of the
super-canonical algebra defined by the Poisson structure of the configuration
space.

This view suggests that in the first approximation one could see the
construction of S-matrix as following process.

1. Incoming/outgoing states correspond to positive/negative energy states
localized to the sectors of configuration space with fixed 3-topologies.

2. In order to construct an S-matrix matrix element between two states
localized in sectors A and B, one must continue the state localized in
A to B or vice versa and calculate overlap. The continuation involves a
sequence of morphisms mapping various structures between sectors. In
particular, topological transformations describing particle decay and
fusion are possible so that the analogs of product µ and co-product ∆
are involved. The construction of three-manifold topological invariants
[34] in topological quantum field theories provides concrete ideas about
how to proceed.

3. The S-matrix element describing a particular transition can be ex-
pressed as any path leading from the sector A to B or vice versa.
There is a huge symmetry very much analogous to the independence
of the final result of the analytic continuation on the path chosen since
generalized Feynman graphs allow all moves changing intermediate
topologies so that initial and final 3-topologies are same. Generalized
conformal invariance probably also poses restrictions on possible paths
of continuation. In the path integral approach one would have simply
sum over all these equivalent paths and thus encounter the fundamen-
tal difficulties related to the infinite-dimensional integration.

4. Quantum classical correspondence suggests that the continuation op-
eration has a space-time correlate. That is, the absolute minimum
of Kähler action going through the initial and final 3-sheets defines
a sequence of transitions changing the topology of 3-sheet. The lo-
calization to a particular sector of course selects particular absolute
minimum. There are two possible interpretations. Either the contin-
uation from A is not possible to all possible sectors but only to those
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with 3-topologies appearing in X4, or the absolute minimum repre-
sents some kind of minimal continuation involving minimum amount
of calculational labor.

5. Quantum classical correspondence and the possibility to represent the
rows of S-matrix as zero energy quantum states suggests that the paths
for continuation can be also represented at the space-time level, per-
haps in terms of braided join along boundaries bonds connecting two
light like 3-surfaces representing the initial and final states of parti-
cle reaction. Since light like 3-surfaces are metrically two-dimensional
and allow conformal invariance, this suggests a connection with braid
diagrams in the sense that it should be possible to regard the paths
connecting sectors of configuration space consisting of unions of dis-
joint 3-surfaces (corresponding interacting 4-surfaces are connected)
as generalized braids for which also decay and fusion for the strands of
braid are possible. Quantum algebra structure and effective metric 2-
dimensionality of the light like 3-surfaces suggests different braidings
for join along boundaries bonds connecting boundaries of 3-surfaces
define non-equivalent 3-surfaces.

5.3.2 Co-multiplication and second quantized induced spinor fields

At the microscopic level the construction of S-matrix reduces to understand-
ing what happens for the classical spinor fields in a vertex, which corresponds
to an incoming 3-surface A decaying to two outgoing 3-surfaces B and C.
At the classical level incoming spinor field A develops into a spinor fields
B and C expressible as linear combinations of appropriate spinor basis. At
quantum level one must understand how the Fock space defined by the in-
coming spinor fields of A is mapped to the tensor product of Fock spaces of
B and C. The idea about the possible importance of co-algebras came with
the realization that this mapping is obviously is very much like a co-product.
Co-algebras and bi-algebras possessing both algebra and co-algebra struc-
ture indeed suggest a general approach giving hopes of understanding how
Feynman diagrammatics generalizes to TGD framework.

The first guess is that fermionic oscillator operators are mapped by the
imbedding ∆ to a superposition of operators a†Bn ⊗ IdC and IdB ⊗ a†Cn

with obvious formulas for Hermitian conjugates. ∆ induces the mapping of
higher Fock states and the construction of S-matrix should reduce to the
construction of this map.

∆ is analogous to the definition for co-product operation although there
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is also an obvious difference due to the fact that ∆ imbeds algebra A to B⊗C
rather than to A⊗A. Only in the case that the algebras are isomorphic, the
situation reduces to that for Hopf algebras. Category theoretical approach
however allows to consider a more general situation in which ∆ is a morphism
in the category of Fock algebras associated with 3-surfaces.

∆ preserves fermion number and should respect Fock algebra structure,
in particular commute with the anti-commutation relations of fermionic os-
cillator operators. The basis of fermionic oscillator operators would nat-
urally correspond to fermionic super-canonical generators in turn defining
configuration space gamma matrices.

Since any leg can be regarded as incoming leg, strong consistency con-
ditions result on the coefficients in the expression

∆(a†An) = C(A,B) m
n a†Bm ⊗ IdC + C(A,C) m

n IdB ⊗ a†Cm (60)

by forming the cyclic permutations in A,B, C. This option corresponds
to the co-commutative situation and quantum group structure. If identity
matrices are replaced with something more general, co-product becomes
non-cocommutative.

5.4 Ribbon category as a fundamental structure?

There exists a generalization of the braided tensor category inspired by the
axiomatic approach to topological quantum field theories which seems to
almost catch the proposed mathematical requirements. This category is
also called ribbon category [33] but in more general sense than it is defined
in [18].

One adds to the tangle diagrams (braid diagrams with both directions of
strands and possibility of strand–anti-strand annihilation) also ”coupons”,
which are boxes representing morphisms with arbitrary numbers of incoming
and outgoing strands. As a special case 3-particle vertices are obtained. The
strands correspond to representations of a fixed Hopf algebra H.

In the recent case it would seem safest to postulate that strands cor-
respond to algebras, which can be different because of the potential de-
pendence of the details of Fock algebra on 3-topology and other proper-
ties of 3-surface. For instance, configuration space metric defined by anti-
commutators of the gamma matrices is degenerate for vacuum extremals
so that the infinite Clifford algebra is definitely ”smaller” than for surfaces
with D ≥ 3-dimensional CP2 projection.
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One might feel that the full ribbon algebra is an un-necessary luxury
since only 3-particle vertices are needed since higher vertices describing de-
cays of 3-surfaces can be decomposed to 3-vertices in the generic case. On
the other hand, many-sheeted space-time and p-adic fractality suggest that
coupons with arbitrary number of incoming and outgoing strands are needed
in order to obtain the p-adic hierarchy of length scale dependent theories.

The situation would be the same as in the effective quantum field the-
ories involving arbitrarily high vertices and would require what might be
called universal algebra allowing n-ary multiplications and co-multiplications
rather than only binary ones. Also strands within strands hierarchy is
strongly suggestive and would require a fractal generalization of the rib-
bon algebra. Note that associativity and commutativity conditions for mor-
phisms which more than three incoming and outgoing lines would force to
generalize the notion of R-matrix and would bring in conditions stating that
more complex loop diagrams are equivalent with tree diagrams.

5.5 Minimal models and TGD

Quaternion conformal invariance with non-vanishing c and k for anyons is
highly attractive option and minimal super-conformal field theories attrac-
tive candidate since they describe critical systems and TGD Universe is
indeed a quantum critical system.

5.5.1 Rational conformal field theories and TGD

The highest weight representations of Virasoro algebra are known as Verma
modules containing besides the ground state with conformal weight ∆ the
states generated by Virasoro generators Ln, n ≥ 0. For some values of ∆
Verma module contains states with conformal weight ∆ + l annihilated by
Virasoro generators Ln, n ≥ 1. In this case the number of primary fields
is reduced since Virasoro algebra acts as a gauge algebra. The conformal
weights ∆ of the Verma modules allowing null states are given by the Kac
formula

∆mm′ = ∆0 +
1
4
(α+m + α−m′)2 , m,m′ ∈ {1, 2...} , (61)

∆0 =
1
24

(c− 1) ,

α± =
√

1− c±√25− c√
24

. (62)
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The descendants
∏

n≥1 Lkn
n |∆〉 annihilated by Ln, n > 0, have conformal

weights at level l =
∑

n nkn = mm′.
In the general case the operator products of primary fields satisfying

these conditions form an algebra spanned by infinitely many primary fields.
The situation changes if the central charge c satisfies the condition

c = 1− 6(p′ − p)2

pp′
, (63)

where p and p′ are mutually prime positive integers satisfying p < p′. In
this case the Kac weights are rational

∆m,m′ =
(mp′ −m′p)2 − (p′ − p)2)

4pp′
, 0 < m < p , 0 < m′ < p′ .

(64)

Obviously, the number of primary fields is finite. This option does not
seem to be realistic in TGD framework were super-conformal invariance is
realized.

For N = 1 super-conformal invariance the unitary representations have
central extension and conformal weights given by

c =
3
2
(1− 8

m(m + 2)
) ,

∆p,q(NS) =
[(m + 2)p)−mq)]2 − 4

8m(m + 2)
, 0 ≤ p ≤ m , 1 ≤ q ≤ m + 2 .

(65)

For Ramond representations the conformal weights are

∆p,q(R) = ∆(NS) +
1
16

. (66)

The states with vanishing conformal weights correspond to light elementary
particles and the states with p = q have vanishing conformal weight in NS
sector. Also this option is non-realistic since in TGD framework super-
generators carry fermion number so that G cannot be a Hermitian operator.

N = 2 super-conformal algebra is the most interesting one from TGD
point of view since it involves also a bosonic U(1) charge identifiable as
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fermion number and G±(z) indeed carry U(1) charge1. Hence one has N = 2
super-conformal algebra is generated by the energy momentum tensor T (z),
U(1) current J(z), and super generators G±(z). U(1) current would corre-
spond to fermion number and super generators would involve contraction of
covariantly constant neutrino spinor with second quantized induced spinor
field. The further facts that N = 2 algebra is associated naturally with
Kähler geometry, that the partition functions associated with N = 2 super-
conformal representations are modular invariant, and that N = 2 algebra
defines so called chiral ring defining a topological quantum field theory [19],
lend further support for the belief that N = 2 super-conformal algebra acts
in super-canonical degrees of freedom.

The values of c and conformal weights for N = 2 super-conformal field
theories are given by

c =
3k

k + 2
,

∆l,m(NS) =
l(l + 2)−m2

4(k + 2)
, l = 0, 1, ..., k ,

qm =
m

k + 2
, m = −l,−l + 2, ...., l − 2, l . (67)

qm is the fractional value of the U(1) charge, which would now correspond
to a fractional fermion number. For k = 1 one would have q = 0, 1/3,−1/3,
which brings in mind anyons. ∆l=0,m=0 = 0 state would correspond to a
massless state with a vanishing fermion number. Note that SU(2)k Wess-
Zumino model has the same value of c but different conformal weights. More
information about conformal algebras can be found from the appendix of
[19].

For Ramond representation L0−c/24 or equivalently G0 must annihilate
the massless states. This occurs for ∆ = c/24 giving the condition k =
2

[
l(l + 2)−m2

]
(note that k must be even and that (k, l, m) = (4, 1, 1) is

the simplest non-trivial solution to the condition). Note the appearance of
a fractional vacuum fermion number qvac = ±c/12 = ±k/4(k + 2). I have
proposed that NS and Ramond algebras could combine to a larger algebra
containing also lepto-quark type generators.

Quaternion conformal invariance [B4] encourages to consider the possi-
bility of super-symmetrizing also spin and electro-weak spin of fermions. In

1I realized that TGD super-conformal algebra corresponds to N = 2 algebra while
writing this and proposed it earlier as a generalization of super-conformal algebra!
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this case the conformal algebra would extend to a direct sum of Ramond
and NS N = 8 algebras associated with quarks and leptons. This algebra
in turn extends to a larger algebra if lepto-quark generators acting as half
odd-integer Virasoro generators are allowed. The algebra would contain
spin and electro-weak spin as fermionic indices. Poincare and color Kac-
Moody generators would act as symplectically extended isometry generators
on configuration space Hamiltonians expressible in terms of Hamiltonians
of X3

l × CP2. Electro-weak and color Kac-Moody currents have conformal
weight h = 1 whereas T and G have conformal weights h = 2 and h = 3/2.

The experience with N = 4 super-conformal invariance suggests that
the extended algebra requires the inclusion of also second quantized induced
spinor fields with h = 1/2 and their super-partners with h = 0 and realized
as fermion-antifermion bilinears. Since G and Ψ are labelled by 2× 4 spinor
indices, super-partners would correspond to 2× (3+1) = 8 massless electro-
weak gauge boson states with polarization included. Their inclusion would
make the theory highly predictive since induced spinor and electro-weak
fields are the fundamental fields in TGD.

In TGD framework both quark and lepton numbers correspond to NS
and Ramond type representations, which in conformal field theories can be
assigned to the topologies of complex plane and cylinder. This would suggest
that a given three-surface allows either NS or Ramond representation and
is either leptonic or quark like but one must be very cautious with this kind
of conclusion. Interestingly, NS and Ramond type representations allow
a symmetry acting as a spectral flow in the indices of the generators and
transforming NS and Ramond type representations continuously to each
other [19]. The flow acts as

Ln → Ln + αJn +
c

6
α2δn,0

Jn → Jn +
c

3
αδn,0 ,

G±
n → G±

n±α . (68)

The choice α = ±1/2 transforms NS representation to Ramond representa-
tion. The idea that leptons could be transformed to quarks in a continuous
manner does not sound attractive in TGD framework. Note that the ac-
tion of Super Kac-Moody Virasoro algebra in the space of super-canonical
conformal weights can be interpreted as a spectral flow.
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5.5.2 Co-product for Super Kac-Moody and Super Virasoro al-
gebras

By the previous considerations the quantized conformal weights z1, z2, z3 of
super-canonical generators defining punctures of 2-surface should correspond
to line punctures of 3-surface. One cannot avoid the thought that these line
punctures should meet at single point so that three-vertex would have also
quantum field theoretical interpretation.

Each point zk corresponds to its own Virasoro algebra Vk = {Lzk)
n } and

Kac-Moody algebra Jk = {Jzk)
n } defined by Laurent series of T (z) and J(z)

at zk. Also super-generators are involved. To minimize notational labor
denote by X

zk)
n , k = 1, 2, 3 the generators in question.

The co-algebra product for Super-Virasoro and Super-Kac-Moody in-
volves in the case of fusion A1 ⊗ A2 → A3 a co-algebra product assigning
to the generators X

z3)
n direct sum of generators of X

z1)
k and X

z2)
l . The

most straightforward approach is to express the generators X
z3)
n in terms

of generators X
z1)
k and X

z2)
l . This is achieved by using the expressions for

generators as residy integrals of energy momentum tensor and Kac Moody
currents. For Virasoro generators this is carried out explicitly in [19]. The
resulting co-product conserves the value of central extension whereas for
the naive co-product this would not be the case. Obviously, the geometric
co-product does not conserve conformal weight.

6 Is renormalization invariance a gauge symmetry
or a symmetry at fixed point?

The notion of renormalization group invariance has a slightly different con-
tent in quantum field theories and in TGD framework. This allows to under-
stand what goes wrong with ordinary Feynman diagrammatics and why the
renormalization procedure combined with experimental input still works.

6.1 How renormalization group invariance and p-adic topol-
ogy might relate?

Renormalization group invariance in the standard sense would suggest that
propagators, vertices, and in fact all generalized Feynman diagrams D, have
a vanishing logarithmic derivative with respect to the parameter λ:
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λ
d

dλ
D = 0 . (69)

All parameters are functions of λ and the interpretation would be as a gauge
symmetry. The equation holds true for on mass shell external momenta.
In TGD context this equation is not expected to hold true generally and
only determines the values of λ, which correspond to the fixed points of
renormalization group evolution at which effective gauge symmetry property
holds true. The critical of λ should correspond to p-adic length scales. This
interpretation allows to assign different values of λ to different particles.

p-Adicization suggests another manner to see the situation. The require-
ment that X ≡ λ2 is well defined both in the real and p-adic sense implies
that λ2 is a rational number. This means a discretization. p-Adicization
poses a cutoff so that X must be integer. The prediction that these val-
ues correspond to stationary points of λd/dλ in the real context is a strong
constraint on the algebraic structure. It is also expected to lead to the quan-
tization of masses and various dimensionless coupling constants. Formally
D as a function of a discrete variable X = N is pseudo constant in the
sense that the derivative vanishes everywhere unlike in the real context and
quantum criticality holds true in a stronger sense.

The primes p dividing X = N are in a preferred position since the p-adic
norm of X is in this case smaller than one. This is in fact necessary for the
series

∑
n>1 D−2n, D = (p2 − m2)/λ2 appearing in the expression for the

propagator to converge p-adically when p2 −m2 has p-adic norm equal to
unity. Thus p-adic topologies Rp for which p divides X are favored. Unless
this is the case p2 − m2 must have p-adic norm smaller than one and the
particle would be non-relativistic in the p-adic sense.

6.2 How generalized Feynman diagrams relate to tangles
with chords?

The work of Vassilev, Kontsevich and other mathematicians related to the
universal knot invariant of finite type [18] generalizes the notion of knot
invariant so that it makes sense also for singular knots having double points
as self-intersections. The invariant of the singular knot is obtained by re-
placing singular points with differences of two possible crossings resulting in
de-singularization so that ordinary knots result.

1. Tangles with chords as a tool to produce universal knot invariant
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The construction of knot invariants for singular knots involves chord
diagrams as an auxiliary tool. Chord diagrams are circles containing m
pairs of points connected by chords. The immersions of circles defining
chord diagrams to R3 define singular knots resulting when the chords are
contracted effectively to points by mapping their end points to a single point
of R3. Vacuum Feynman diagrams can be seen as the physical analogs of
the chord diagrams associated with circle.

Chords can be attached also to a tangles, whose endpoints defining their
boundaries are fixed and instead of circle the strands of the tangle contain
the 3-vertices. The physical analogy of chords would be as particle exchanges
allowing only 3-vertices at strands of the tangle but not elsewhere. Tensor
product and concatenation of the tangles are well defined operations also
in the presence of chords. Chord diagrams associated with tangles allow
Hopf algebra structure graded by the number c of chords (c relates to the
number L of loops by c = L− 1 for chord diagrams associated with circles).
The tangles A and B such that the source of A is target of B can be fused
to tangle A ◦ B and this induces a product µ : A ⊗ B → A ◦ B of the
chord diagrams. The co-commutative co-product ∆(D) of chorded tangle
D is obtained by forming the sum of the tensor products D′ ⊗ D′′ of all
sub-diagrams D′ ⊂ D and their complements D′′.

2. How tangles with chords relate to generalized Feynman diagrams?

It is interesting to see how tangles with chords could relate to generalized
Feynman diagrams whose symmetries should code the basic axioms of the
underlying algebraic structure expressing in turn quantum criticality.

1. The structure of generalized Feynman graphs differs from that of tan-
gles with chords in the sense that also internal 3-vertices are allowed.
The imbedding of the tangles to singular braids does not make sense
since the mapping of the end points of the chords of a tree diagram
to single point would transform tree diagrams to diagrams having no
3-vertices. Neither does the difference K+ − K− of knot diagrams
have any obvious interpretation in terms of Feynman diagrams. This
does not however exclude the possibility of mapping of the diagrams
tonon-singular braids in R3.

2. The expression for quantum criticality as a symmetry is the free motion
of the end points of the chords along the lines of the tangle. The end
points of the chord can be made to co-incide in the final situation if the
tangle contains a path connecting the points. In this case a self energy
loop with coinciding end points results. It is possible to continue the
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motion of the second end of the loop so that a 3-vertex with a line
containing at its end a bubble necessarily representing vacuum state
results, and must correspond to emission of vacuon and can thus be
eliminated. Also higher vertices can be decomposed to 3-vertices using
the same trick. When the end points of the chord cannot be connected
by a path contained by the tangle, chord cannot be eliminated. All
loops can be eliminated in this manner so that the outcome is a tree
diagram.

3. If knotting would matter, one would obtain an infinite number of non-
equivalent diagrams since both internal and external lines could be
knotted. It seems that only braiding of the external lines can be al-
lowed. Note that braiding is basically linking and thus represents
a ”many-particle phenomenon” whereas knotting is ”single particle
phenomenon” (sub-manifolds X and Y with dimensions n > 0 and
D−n−1 can become linked whereas knotting occurs for sub-manifolds
of dimension D − 2).

4. The possibility to move freely the end points of the chords along lines
means that the moves are more general than those induced by orien-
tation preserving maps acting on the lines preserving the ordering of
the points associated with the lines so that it is not possible to get
through vertices. For instance, a non-planar diagram describing a ver-
tex correction can be transformed to a corresponding planar diagram.
This might relate to the fact that p-adic numbers are not well-ordered
and that the diagrams should make sense also in the p-adic context.

6.3 Do standard Feynman diagrammatics and TGD inspired
diagrammatics express the same symmetry?

The computational formalism of quantum field theories has enjoyed an enor-
mous success, and this forces to ask whether the Feynman rules of renor-
malized quantum field theory provide a very cumbersome manner to express
essentially the same great idea than TGD view about Feynman diagrams
tries to do. If so, the equivalence of loop diagrams with tree diagrams must
have an algebraic formulation using the language of the standard quantum
field theory. In will be indeed found that, thanks to the presence of the
emission of vacuons, the equivalence of loop diagrams with tree diagrams
corresponds to the vanishing of loop corrections in the standard quantum
field theory framework (vacuum lines have vacuum extremals as classical
space-time correlates). Thus there is a transition from TGD based notion
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of Feynman diagram to that of ordinary Feynman diagram. One might say
that generalized diagrams relate to Feynman diagrams like an integral to
the integrand which is constant.

The following considerations support the view that there is a delicate dif-
ference between the philosophies behind the two approaches. In the standard
quantum field theory approach scalings act as gauge symmetries whereas in
TGD they are analogous to isometries at a fixed point by quantum critical-
ity. p-Adic length scales define the preferred length scales associated with
the fixed points. An effective reduction to gauge symmetry however occurs
at the fixed points.

1. The Hopf and Lie algebras associated with Feynman diagrams

The work of Connes and Kreimer [45] provides support for the vision
declared above. Connes and Kreimer Connes and Kreiman accept quan-
tum field theory as such and generalize the Hopf algebra and Lie algebra
structures associated with diagrams defined by tangles with chords so that
they apply to Feynman diagrams. The enveloping algebra of Lie-algebra of
Feynman diagrams can be identified as the dual of the corresponding Hopf
algebra and assigns numerical expressions to Feynman graphs. The Lie al-
gebra exponentiates to an infinite-dimensional group G. TGD approach can
be seen as a diametrical opposite of this approach: the idea is to replace
Feynman diagrammatics with chorded tangle diagrammatics with quantum
criticality as the fundamental symmetry allowing to eliminate loops.

The outcome is a systematic and very elegant representation of the di-
mensional regularization procedure. The complex sphere S2 defined by a
complexified space-time dimension D emerges naturally since the dimen-
sional regularization involves a small complex curve D = 4 + ε(z) surround-
ing the point D = 4. The curve divides S2 to two disjoint parts C+ and
C−. The dependence of the Feynman graph on complexified dimension de-
fines a map z → γ(z) from S2 to the group G. The Birkhoff decomposition
γ(z) = γ−1

− (z)γ+(z) such that γ±(z) is holomorphic in C± allows to extract
the finite part of the Feynmann diagram as the value of γ+(z) at z = D = 4.

Only one-particle irreducible (1PI) Feynman graphs (not decomposing to
two disconnected parts when single line is removed) relevant for the effective
action are considered. The commutative product for Feynman graphs is
simply the union of graphs whereas co-product involves the decomposition
of the graph in various manners to a sub-graph D1 and its complement
Dc

1 and summing over all possible tensor products D ⊗ Dc
1. Graph and

complement are allowed to meet only through two or three lines, which
relates to the assumption that no higher vertices are allowed in the model
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considered. A somewhat analogous decomposition appears in Bogoliubov’s
recursion formula and in Zimmermann’s general solution to it using the
”forest formula” [49] and giving renormalized quantities without any need
for regularization. Co-product is not co-commutative.

The Lie-algebra action in the space of 1PI Feynman diagrams has inter-
pretation in terms of insertions and eliminations for Feynman diagrams, the
Lie bracket being computable from the insertions of one graph to another
one and vice versa. Lie-algebra generators corresponds to linear complex
valued functionals f(X) in the space of 1PI Feynman diagrams with obvi-
ous product and ? operation f ?g(X) = µ◦(f⊗g)∆(X)) for the dual algebra
is used to define associative product in turn defining the Lie algebra com-
mutator. Elimination means the replacement of a sub-graph with a single
vertex graph having the same external lines as the original graph. Insertion
is the inverse of this procedure. For instance, a bare vertex can be replaced
with a vertex containing some radiative corrections.

2. The Lie-algebra of Feynman diagrams annihilates Green’s functions
at quantum criticality in TGD Universe

In TGD framework the non-cocommutative Hopf algebra of Feynman di-
agrams becomes effectively co-commutative at quantum critical point since
loop corrections vanish. Also the action of the scaling transformation re-
alized infinitesimally as λd/dλ operation leaves the expressions associated
with Feynman diagrams invariant only for the critical values of λ. In stan-
dard renormalization theory the action of the scaling transformation would
be a gauge symmetry for all values of renormalization parameter λ.

Quite generally, there are two basic manners to realize gauge invariance.
One can sum over all gauge equivalent configurations and form an average
or one can perform a gauge fixing. The standard renormalization group
invariant quantum field theory based on the functional integral and sum-
mation over Feynman diagrams could be seen as an attempt to produce
renormalization group gauge invariance by simply taking an average over
all gauge equivalent Feynman diagrams by using a gauge invariant integra-
tion measure. Divergence difficulties could be seen as being due to the fact
that this integration measure is un-normalized and gives infinite values so
that one must introduce infinite renormalization constants. In TGD based
diagrammatics the effective gauge invariance would be realized by picking
just single tree diagram from the equivalence class of physically equivalent
diagrams, or if standard Feynmann diagrammatics is used, by the vanishing
of loop corrections.
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6.4 How p-adic coupling constant evolution is implied by the
vanishing of loops?

Consider next how the equivalence of loop diagrams with tree diagrams can
be consistent with the vanishing of loop corrections and how this equivalence
could fix the coupling constant evolution.

1. What is new as compared to quantum field theory is that algebraic
approach predicts the possibility of vacuum lines to which one assigns
an identity operator and vanishing momentum and super-canonical
conformal weight. This means that the amplitude associated with a
given loop diagram contains terms associated with simpler diagrams
with some internal propagator lines eliminated. The equivalence of
loop diagrams with tree diagrams would mean that the conservation
of conformal weight in vertices allows only identity operator in the loop
propagator lines describing exchanged particles so that the reduction
to tree diagrams occurs. The contributions with non-trivial propa-
gators should vanish by the requirement that the allowed conformal
weights correspond to the zeros of relevant polyzetas. The reduction
of loop diagrams to tree diagrams uniquely fix evolution of the vertices
as a function λ and thus of p-adic length scale.

2. Consider first the conditions from the reduction of loops with vacuum
exchanges to tree diagrams. In the case of a self energy bubble defined
by 3-vertex the reduced part of the diagram would correspond to an
insertion of a term VvacGVvac, where Vvac is the vertex for the emission
of the vacuum line and G is the propagator. The reduction to a tree
diagram gives the condition

VvacGVvac = 1 . (70)

The reduction of 3-vertex with triangle to tree-vertex gives

(VvacG⊗ VvacG)V = V . (71)

The reduction of the box diagram to tree diagram gives

(1⊗G⊗ 1)(VvacG⊗ 1)V ⊗ (1⊗ VvacG)V = (1⊗G⊗ 1)V ⊗ V . (72)
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Note that V is analogous to the co-multiplication ∆ and VvacGVvac

is analogous to co-multiplication H → H ⊗ k defined as the inverse
of the multiplication of algebra element by the field k with respect to
which algebra is a linear space.

3. The vertices depend on the conformal weights of the particles emanat-
ing from the vertex (besides momenta and other quantum numbers)
so that for three vertex one has V3 = V (z1, z2, z3). The natural guess
is that conformal weights or at least their imaginary parts, which are
highly analogous to ordinary momenta, are conserved in the vertices
and that the conformal weights z1, z2, ..., zk emanating from the vertex
correspond to zeros of ζ(z1, z2, ....zk). As already found, the conserva-
tion of the entire conformal weight allows non-vanishing tree diagrams
in the case of three-vertices so that this condition looks sensible.

4. Loop corrections associated with the vertices should vanish. This is
achieved if each external 3-vertex associated with the loop gives in the
loop integration a factor proportional to ζ(z1, z2), where zi are the
conformal weights associated with the internal lines of the vertex. For
n-vertices ζ(z1, z2, ..., zn−1) should result in the loop integration.

A stronger hypothesis is that all loop integrals, say an arbitrary vac-
uum bubble containing an arbitrary number of propagator lines ema-
nating from the points of a circle and connected to the points inside
the circle assigns a factor ζ(z1, z2, ..zk) with each external k-vertex.
Effectively this would mean a separation of variables in the conformal
degrees of freedom associated with the external vertices. Since essen-
tially topological degrees of freedom are in question, one might hope
that this is possible.

The conditions are very stringent and might allow only three-vertices in ac-
cordance with the assumption that the Hopf algebra based category describ-
ing vertices relies on binary algebraic operations. The condition would relate
propagators to vertices and fix their coupling constant evolution. These con-
siderations encourage the hopes that the proposed program might work.

6.5 Hopf algebra formulation of unitarity and failure of per-
turbative unitarity in TGD framework

Unitarity is the basic property of the S-matrix and this raises the question
whether also unitarity might be expressed using Hopf algebra language.
Since perturbative unitarity giving infinite number of conditions in various
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orders of coupling constant is the basic aspect of quantum field theories,
one is led to ask whether the generalized Feynmann diagrams could allow
to identify the counterpart of perturbative unitarity. It turns out that this
is not the case and is expected to be so on basis of quantum criticality.

That perturbative unitarity allows Hopf algebra formulation has been
demonstrated to be the case by Yong Zhang [26] in the case of Φ4 theory
and the proof seems to generalize in a straightforward manner. The Hopf
algebra formulation for unitarity generalizes at the formal level to TGD
framework although the perturbative unitarity is lost.

6.5.1 Cutkosky rules

Scalar field propagator ∆F can be decomposed into a sum of positive and
negative cutting propagators ∆+ and ∆−.

∆F = θ(x0 − y0)∆+(x− y) + θ(y0 − x0)∆−(x− y) ,

∆±(x− y) =
∫

d4k

(2π)4
θ(±k0)2πδ(k2 −m2)exp(ik · (x− y)) . (73)

Perturbative unitarity can be formulated using Cutkosky rules [27] in
the following manner.

1. Consider the decompositions of the vertices of the Feynman diagram
to ordinary and circled vertices by a cut line dividing the diagram to
left and right sub-diagrams. Perform Hermitian conjugation for the
circled vertices and for the propagators connecting circled vertices. If
the propagator connects ordinary (circled) vertex to circled (ordinary)
vertex, replace it by ∆+ (∆−). This operation obviously puts the par-
ticles at the cut lines on mass shell. Conservation laws give constraints
on admissible cuts.

2. Perturbative unitarity states that the sum of Feynman diagrams ob-
tained by dividing the Feynman diagram Γ in all possible manners to
ordinary and circled vertices using cut line and performing some mod-
ifications vanishes. Also included are the decomposition to the union
of Γ and empty diagram Φ and to the union of Φ and conjugate of
Γ: this obviously corresponds to the imaginary part i(T − T †) of the
scattering amplitude whereas the remaining terms correspond to the
TT † term in a given order of the perturbation theory defined by the
number of vertices in the case of Φ4 theory.
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6.5.2 Largest time equation Hopf algebraically

Consider next the Hopf algebra formulation of the largest time equation (not
equivalent with perturbative unitarity).

1. The set H defining the Hopf algebra is generated by connected Feyn-
man diagrams. The number field is C. Algebra structure is obtained
in a trivial manner. The addition of diagrams is defined by the formal
linear combination aΓ1 + bΓ2. The multiplication m corresponds to
disjoint union. The unit map η specifies unit e as empty set Φ with
η(1) = e.

2. To define co-algebra structure some notational conventions are neces-
sary. Let Γ denote arbitrary Feynman graph, VN (Γ) denote the set of
vertices of N-vertex Feynman diagram, γ a sub-diagram constructed
using a subset Vc(Γ) of vertices of Γ and all lines connecting them. A
reduced diagram Γ/γ is what remains when γ is cut out of Γ. The cut
internal lines of Γ appear as external lines of γ and Γ/γ. Γ and empty
set Φ are called trivial diagrams.

3. The co-product ∆ is defined by

∆(Γ) = e⊗ Γ + Γ⊗ e +
∑

1≤c<N

γ(Vc)⊗ Γ/γ . (74)

Here the sum includes all possible divisions of the vertices to ordinary
and circled vertices.

The co-unit ε vanishes except for ε(e) = 1. Co-associativity is ensured
by the fact that two subsequent divisions of a vertex set commute. Antipode
is defined recursively by

S(Γ) = −Γ− e⊗ Γ + Γ⊗ e +
∑

1≤c<N

S(γ(Vc))⊗ Γ/γ (75)

with S(e) = e.
Define a new multiplication m of diagram and conjugate diagram by

reconnecting the cut lines ending at the same point and assigning to the re-
sulting internal line ∆+. Let φ resp. φc be the Hopf algebra homomorphisms
assigning to the Feynman diagram Feynman integral resp. its conjugate. m
is in a well-defined sense the reverse of ∆ and hence very natural.
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The convolution φ?φc can be defined using the general formula involving
only ∆ and m

φ ? φc(Γ) = m(φ⊗ φc)∆(Γ) . (76)

Largest time equation corresponds to the condition

φ ? φc(Γ) = φc ? φ(Γ) = 0 (77)

6.5.3 The formulation of perturbative unitarity using cutting
equation

Cutting equation stating perturbative unitary is obtained when only so
called admissible cuts are allowed in the definition of the co-product ∆.
An admissible cut is defined by a line dividing the diagram into two parts,
the left and the right part, in a manner consistent with conservation laws.
The left part γ connects at least one incoming line whereas the right part
Γ/γ connects at least one outgoing line. For γ resp. Γ/γ ordinary resp.
conjugate Feynman rules are applied.

Cutting equations are of the same Hopf-algebraic form as the largest
time equation with the only difference coming from the different definition
of the co-product:

φ ? φc(Γ) ≡ m(φ⊗ φc)∆(Γ) = 0 . (78)

The convolution operation ? is defined by the general formula with m de-
fined by reconnecting the cut lines with the same quantum numbers so that
∆− connects a circled vertex to an un-circled one. A sum over connected
diagrams expressing unitarity condition in a given order of coupling con-
stant defined by the number of vertices results in the operation. By writing
explicitly the formula one has

φc(Γ) + φ(Γ) +
′′∑
m [φ(γ)⊗ φc(Γ/γ)] = 0 . (79)

Here the super-script ′′ denotes sum over all admissible cuttings. The first
terms obviously correspond to i(T − T †) term and latter terms to the sum
of intermediate states appearing in TT † term.
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6.5.4 Hopf algebra formulation of unitarity conditions in TGD
context

The equivalence of the generalized tree diagrams with an infinite number of
generalized loop diagrams implied by quantum criticality can be regarded
as something highly non-perturbative, so that the generalization of the per-
turbative unitarity is not expected to make sense.

This indeed seems to be the case. If perturbative unitarity would make
sense, each loopy version of a given tree diagram would define a particular
perturbative unitarity condition. The absorbtive part i(T − T †) of a given
tree amplitude would have infinitely many different expressions of form TT †

with the product of T and T † defined such that only a sum over a subspace
of intermediate states occurs in it. Unless the different subspaces of inter-
mediate states are gauge equivalent, unitarity requires that absorbtive part
equals to the sum over all these subsets.

The Hopf algebra formulation for unitarity could however makes sense
also now.

1. There are good hopes that the stringy propagators G, G+, and G−
are well defined. Since four-momentum appears as an argument of
the propagator G, G+ can be obtained as the absorptive part of G
behaving as G ∝ 1/(p2 −m2 + iε) near mass shell and becomes thus
restricted on mass shell. G− can be defined as a Hermitian conjugate
of G+.

2. The co-product ∆ for the tree diagram Γ must be defined as a sum
over all possible loopy diagrams equivalent with Γ by assigning to each
loopy diagram a sum over all admissible cuttings. Antipode S is de-
fined recursively and summing over all loopy diagrams equivalent with
Γ. m is essentially the inverse of ∆ and defined in the same man-
ner as in quantum field theory for each sub-diagram in the unitarity
sum defined by TT †. Also the convolution ? would be defined as be-
fore. Unitarity conditions formulated as cutting rules would state the
vanishing of φ ? φc(Γ).

7 The spectrum of the zeros of Riemann Zeta and
physics

The properties of the spectrum of the zeros of Riemann Zeta have cru-
cial implications for the quantum TGD. For instance, the question whether
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the imaginary parts of the zeros are linearly independent or not has deep
physical meaning as the model for the scalar field propagator as a partition
function for the super-canonical algebra demonstrates. Combining the ex-
isting intriguing numerical findings about the correlation functions of the
non-trivial zeros allows to make a precise guess about the structure of the
zeros of Zeta satisfying also the most obvious physical constraints.

7.1 Are the imaginary parts of the zeros of Zeta linearly
independent of not?

Concerning the structure of the weight space of super-canonical algebra the
crucial question is whether the imaginary parts of the zeros of Zeta are
linearly independent or not. If they are independent, the space of conformal
weights is infinite-dimensional lattice. Otherwise points of this lattice must
be identified. The model of the scalar propagator identified as a suitable
partition function in the super-canonical algebra for which the generators
have zeros of Riemann Zeta as conformal weights demonstrates that the
assumption of linear independence leads to physically unrealistic results and
the propagator does not exist mathematically for the entire super-canonical
algebra. Also the findings about the distribution of zeros of Zeta favor a
hypothesis about the structure of zeros implying a linear dependence.

7.1.1 Imaginary parts of non-trivial zeros as additive counter-
parts of primes?

The natural looking (and probably wrong) working hypothesis is that the
imaginary parts yi of the nontrivial zeros zi = 1/2 + yi, yi > 0, of Riemann
Zeta are linearly independent. This would mean that yi define play the role
of primes but with respect to addition instead of multiplication. If there
exists no relationship of form yi = n2π + yj , the exponents eiyi define a
multiplicative representation of the additive group, and these factors satisfy
the defining condition for primeness in the conventional sense. The inverses
e−iyi are analogous to the inverses of ordinary primes, and the products of
the phases are analogous to rational numbers.

There would exist an algebra homomorphism from {yi} to ordinary
primes ordered in the obvious manner and defined as the map as yi ↔ pi.
The beauty of this identification would be that the hierarchies of p-adic cut-
offs identifiable in terms of the p-adic length scale hierarchy and y-cutoffs
identifiable in terms p-adic phase resolution (the higher the p-adic phase
resolution, the higher-dimensional extension of p-adic numbers is needed)
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would be closely related. The identification would allow to see Riemann
Zeta as a function relating two kinds of primes to each other.

A rather general assumption is that the phases piyi are expressible as
products of roots of unity and Pythagorean phases:

piy = eiφP (p,y) × eiφ(p,y) ,

eiφP (p,y) =
r2 − s2 + i2rs

r2 + s2
, r = r(p, y) , s = s(p, y) ,

eiφ(p,y) = ei 2πm
n , m = m(p, y) , n = n(p, y) . (80)

If the Pythagorean phases associated with two different zeros of zeta are
different a linear independence over integers follows as a consequence.

Pythagorean phases form a multiplicative group having ”prime” phases,
which are in one-one correspondence with the squares of Gaussian primes, as
its generators and Gaussian primes which are in many-to-one correspondence
with primes p1 mod 4 = 1. If piy is a product of algebraic phase and
Pythagorean phase for any prime p, one should be able to decompose any
zero y into two parts y = y1(p) + yP (p) such that one has

log(p)y1(p) =
m2π

n
, log(p)yP (p) = ΦP = arctan

[
2rs

r2 + s2

]
. (81)

Note that the decomposition is not unique without additional conditions.
The integers appearing in the formula of course depend on p.

7.1.2 Does the space of zeros factorize to a direct sum of multi-
ples Pythagorean prime phase angles and algebraic phase
angles?

As already noticed, the linear independence of the yi follows if the Pythagorean
prime phases associated with different zeros are different. The reverse of this
implication holds also true. Suppose that there are two zeros log(p)y1i =
ΦP1 + q1i2π, i = a, b and two zeros log(p)y2i = ΦP2 + q2i2π, i = a, b, where
qij are rational numbers. Then the linear combinations n1y1a + n2y2a and
n1y1b +n2y2b represent same zeros if one has n1/n2 = (q2a− q2b)/(q1b− q1a).

One can of course consider the possibility that linear independence holds
true only in the weaker sense that one cannot express any zero of zeta as
a linear combination of other zeros. For instance, this guarantees that the
super-canonical algebra generated by generators labelled by the zeros has
indeed these generates as a minimal set of generating elements.
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For instance, one can imagine the possibility that for any prime p a
given Pythagorean phase angle log(p)yPk

corresponds to a set of zeros by
adding to ΦPk

= log(p)yPk
rational multiples qk,i2π of 2π, where Qp(k) =

{qk,i|i = 1, 2, ..} is a subset of rationals so that one obtains subset {ΦPk
+

qk,i2π|qk,i ∈ Qp(k)}. Note that the definition of yP involves an integer
multiple of 2π which must be chosen judiciously: for instance, if yP is taken
to be minimal possible (that is in the range (0, π/2), one obviously ends up
with a contradiction. The same is true if qk,i < 1 is assumed. Needless to
say, the existence of this kind of decomposition for every prime p is extremely
strong number theoretic condition.

The facts that Pythagorean phases are linearly independent and not
expressible as a rational multiple of 2π imply that no zero is expressible as
a linear combination of other zeros whereas the linear independence fails in
a more general sense as already found. An especially interesting situation
results if the set Qp(k) for given p does not depend on the Pythagorean
phase so that one can write Qp(k) = Qp. In this case the set of zeros of
Zeta would be obtained as a union of translates of the set Qp by a subset of
Pythagorean phase angles and approximate translational invariance realized
in a statistical sense would result. Note that the Pythagorean phases need
not correspond to Pythagorean prime phases: what is needed is that a
multiple of the same prime phase appears only once.

An attractive interpretation for the existence of this decomposition to
Pythagorean and algebraic phases factors for every prime is in terms of the
p-adic length scale evolution. The possibility to express the zeros of Zeta in
an infinite number of manners labelled by primes could be seen as a number
theoretic realization of the renormalization group symmetry of quantum
field theories. Primes p define kind of length scale resolution and in each
length scale resolution the decomposition of the phases makes sense. This
assumption implies the following relationship between the phases associated
with y:

[
ΦP (p1) + q(p1)2π

]

log(p1)
=

[
ΦP (p2) + q(p2)2π

]

log(p2)
. (82)

In accordance with earlier number theoretical speculations, assume that
log(p2)/log(p1) ≡ Q(p2, p1) is rational. This condition allows to deduce how
the phases piy

1 transform in p1 → p2 transformation. Let piy
1 = UP,p1,yUq,p1,y

be the representation of piy
1 as a product of Pythagorean and algebraic

phases. Using the previous equation, one can write
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piy
2 = UP,p2,yUq,p2,y = U

Q(p2,p1)
P,p1,y UQ(p2,p1)

q,p1,y . (83)

This means that the phases are mapped to rational powers of phases. In
the case of Pythagorean phases this means that Pythagorean phase becomes
a product of some Pythagorean and an algebraic phase whereas algebraic
phases are mapped to algebraic phases. The requirement that the set of
phases piy

2 is same as the set of phases piy
1 implies that the rational power

U
Q(p2,p1)
P,p1,y is proportional to some Pythagorean phase UP,p1,y1 times algebraic

phase Uq such that the product of UqU
Q(p2,p1)
q,p1,y gives an allowed algebraic

phase. The map UP,p1,y → UP,p1,y1 from Pythagorean phases to Pythagorean
phases induced in this manner must be one-to one must be the map between
algebraic phases. Thus it seems that in principle the hypothesis might make
sense.

The basic question is why the phases qiy should exist p-adically in some
finite-dimensional extension of Rp for every p. Obviously some function
coding for the zeros of Zeta should exist p-adically. The factors Gq =
1/(1 − q−iy−1/2) of the product representation of Zeta obviously exist if
this assumption is made for every prime p but the product is not expected
to converge p-adically.

Also the logarithmic derivative of Zeta codes for the zeros and can be
written as

ζ ′

ζ
= −

∑
q

log(q)
q−1/2−iy

1− q−1/2−iy
. (84)

As such this function does not exist p-adically but dividing by log(p) one
obtains

1
log(p)

ζ ′

ζ
= −

∑
q

Q(q, p)
q−1/2−iy

1− q−1/2−iy
. (85)

This function exists if the p-adic norms rational numbers Q(q, p) approach
to zero for q → ∞: |Q(q, p)|p → 0 for q → ∞. The p-adic existence of
the logarithmic derivative would thus give hopes of universal coding for the
zeros of Zeta and also give strong constraints to the behavior of the factors
Q(q, p). The simplest guess would be Q(q, p) ∝ pq for q →∞.

99



7.1.3 Correlation functions for the spectrum of zeros favor the
factorization of the space of zeros

The idea that the imaginary parts of the zeros of Zeta are linearly indepen-
dent is a very attractive but must be tested against what is known about
the distribution of the zeros of Zeta.

There exists numerical evidence for the linear independence of yi as well
as for the hypothesis that the zeros correspond to a union of translates
of a basic set Q1 by subset of Pythagorean phase angles. Lu and Sridhar
have studied the correlation among the zeros of ζ [38]. They consider the
correlation functions for the fluctuating part of the spectral function of zeros
smoothed out from a sum of delta functions to a sum of Lorentzian peaks.
The correlation function between two zeros with a constant distance K2 −
K1 +s with the first zero in the interval [K1,K1 +∆] and second zero in the
interval [K2,K2 + ∆] is studied. The choice K1 = K2 assigns a correlation
function for single interval at K1 as a function of distance s between the
zeros.

1. The first interesting finding, made already by Berry and Keating, is
that the peaks for the negative values of the correlation function cor-
respond to the lowest zeros of Riemann Zeta (only those contained
in the interval ∆ can appear as minima of correlation function). This
phenomenon observed already by Berry and Keating is known as resur-
gence. That the anti-correlation is maximal when the distance of two
zeros corresponds to a low lying zero of zeta can be understood if linear
combinations of the zeros of Zeta are the least probable candidates for
zeros. Stating it differently, large zeros tend to avoid the points which
represent linear combinations of the smaller zeros.

2. Direct numerical support the hypothesis that the correlation function
is approximately translationally invariant, which means that it de-
pends on K2−K1 +s only. Correlation function is also independent of
the width of the spectral window ∆. In the special K1 = K2 the finding
means that correlation function does not depend at all on the posi-
tion K1 of the window and depends only on the variable s. Prophecy
means that the correlation function between the interval [K, K + ∆]
and its mirror image [−K −∆,−K] is the correlation function for the
interval [2K +∆] and depends only on the variable 2K + s allowing to
allows to deduce information about the distribution of zeros outside
the range [−K, K]. This property obviously follows from the proposed
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hypothesis implying that the spectral function is a sum of translates
of a basic distribution by a subset of Pythagorean prime phase angles.

This hypothesis is consistent with the properties of the smoothed out
spectral density for the zeros given by

〈ρ(k)〉 =
1
2π

log(
k

2π
) . (86)

This implies that the smoothed out number of zeros y smaller than Y is
given by

N(Y ) =
Y

2π
(log(

Y

2π
)− 1) . (87)

N(Y ) increases faster than linearly, which is consistent with the assump-
tion that the distribution of zeros with positive imaginary part is sum over
translates of a single spectral function ρQ0 for the rational multiples qiXp,
Xp = 2π/log(p), qi ∈ Qp, for every prime p.

If the smoothed out spectral function for qi ∈ Qp is constant:

ρQp =
1

Kp2π
, Kp > 0 , (88)

the number NP (Y, p) of Pythagorean prime phases increases as

NP (Y |p) = Kp(log(
Y

2π
)− 1) , (89)

so that the smoothed out spectral function associated with NP (Y |p) is given
by the function

ρP (k|p) =
Kp

k
(90)

for sufficiently large values of k. Therefore the distances between subsequent
zeros could quite well correspond to the same Pythagorean phase for a given
p and thus should allow to deduce information about the spectral function
ρQ0 . A convenient parametrization of Kp is as K = Kp,0/4π2 since the
points of Qp are of form qi2π = (n(qi) + q1(qi))2π, q1 < 1, and n(qi) must
in the average sense form an evenly spaced subset of reals.
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7.1.4 Physical considerations favor the linear dependence of the
zeros

The numerical evidence is at best suggestive and one can always argue that
by an arbitrary small deformation of the linearly dependent zeros one obtains
linearly independent zeros. This would however require that each zero of
form yPi + q2π, q ∈ Qp is very near to a zero ΦPk(i,q)

+ qk(i,q)2π. In other
words, the union of the translates of Qp by a subset of Pythagorean phases
would approximate the zeros in one-one correspondence with a larger subset
of Pythagorean phases (given prime phase appears only once). This should
hold for every prime and this seems rather implausible.

On the other hand, the linear dependence between zeros has deep physi-
cal implications for the basic quantum TGD, and as the following arguments
demonstrate, is physically highly desirable. The precise arguments are de-
veloped later and here only the skeleton of the argument is given.

1. The zeros label the generating elements of the super-canonical alge-
bra and the failure of the linear independence means that the weight
system is not just the infinite-dimensional lattice spanned by the ze-
ros but can be regarded as a kind of bundle like structure such that
the linear combinations log(p)yb =

∑N
i=1 niΦPki

form N-dimensional
lattice and the fiber at a given point of this lattice consists of the
points log(p)yf =

∑
i niqi2π. The set of these points is the lattice

n1Qp × n2Qp × ... divided by the equivalence defined by yf,1 = yf,2

and for given values of ni a discrete analog of the one-dimensional
space of parallel hyper-planes of an N-dimensional defined by the equa-
tion

∑N
i=1 nix

i = y space parameterized by the values of y. What
is essential that the space of the planes is different for each point
yb =

∑N
i=1 niyPki

.

2. The calculation of the scalar propagator as a partition function for
the super-canonical algebra assuming linear independence gives with-
out any restrictions to the super-canonical weights an infinite num-
ber of delta-function resonances of form δ(p2 −m2

n), and at the limit
when all zeros of the Riemann Zeta are included in the sub-algebra of
super-canonical algebra the set of delta function resonances defines a
dense set on real axis. If only the super-canonical conformal weights
generated by the positive zeros of Zeta are included, delta function res-
onances become ordinary poles of form 1/(p2 −m2

k). The resonances
are infinitely narrow and form also now a dense set of real axis.
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3. This result, which can be claimed to be non-physical, can be avoided
if the zeros are not linearly independent. Although the partition func-
tion cannot be calculated explicitly in this case, one can expect that
the linear independence gives a reasonable first approximation and
that the failure of the approximation is due to the multiple counting
caused by the neglect of the fact that the planes of the fiber space can
contain several equivalent points. If the zeros are linearly dependent,
resonances get a finite width and singularities are avoided for real val-
ues of the masses and there are good hopes that the partition function
is well-defined for the entire super-canonical algebra.

4. A further argument favoring the proposed form of zeros relates to the
two hierarchies strongly suggested by quantum TGD. The first hierar-
chy corresponds to ordinary primes labelling p-adic length scales and
corresponds to length scale resolution. The second hierarchy corre-
sponds to a hierarchy of algebraic extensions of p-adic numbers and
there is strong feeling that this hierarchy should correspond to the hier-
archy of Beraha numbers Bn = 4cos2(π/n) associated with the phases
q = exp(iπ/n). The phases exp(iπ/p) or their non-trivial powers, for
p prime, are even more interesting because of the structure of finite
field G(p, 1). The phases q which are expressible using only rationals
and their square roots and thus correspond to n-polygons constructible
using only ruler and compass, are also interesting and seem to have
concrete physical interpretation [C7, D5]. The expression for n is in
this case n = nF = 2k ∏

i Fni , where Fn = 22n
+ 1, n = 0, .., 4 are

Fermat primes. All Fermat primes in the product are different.

One could consider the possibility that the rationals q ∈ Qp for any
p can be ordered by their size in such a manner that this ordering
corresponds to the ordering of primes with respect to size. Obviously
the condition Qp = Q1 must hold true. This would imply that the
products of the powers of the phases exp(iq2π) for the lowest N val-
ues of qi would give the Beraha phases corresponding to square free
integers having corresponding primes pi, i = 1, ..., N , as factors. All
Beraha phases are obtained if the phases exp(iπ/pn), n = 1, 2, .. or
their non-trivial powers, are also present. If this waves the case the
full p-adic length scale hierarchy with powers of p would correspond to
the hierarchy of Beraha phases. This would mean that the addition of
new super-canonical conformal weights of increasing size to the sub-
algebra of the super-canonical algebra would mean the increase of the
dimension of the extension of p-adic numbers needed to represent the
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resulting phases p-adically as well as an increasing phase resolution.

5. With the assumptions about the structure of zeros of Zeta, the hierar-
chies defined by the subset yPi of multiples of Pythagorean prime phase
angles and algebraic phases would neatly factorize and the latter would
correspond to the p-adic length scale hierarchy. Pythagorean phases
correspond to phases of the squares of Gaussian integers r+ is and the
squares of Gaussian primes define naturally Pythagorean primes. The
norm squared of the Gaussian prime is obviously prime: r2 + s2 = p1,
and satisfies p1 mod 4 = 1. Hence there is a natural correspondence
between Pythagorean prime phases and primes p mod 4 = 1. One can
wonder whether also Pythagorean prime phase angles could be mapped
to a subset of primes such that that size ordering for yPi would corre-
spond to the size ordering for the subset of primes. As already noticed,
the primeness property is actually an un-necessary strong requirement
for Pythagorean phases: it is enough that only single power of a given
Pythagorean prime phase appears.

Needless to emphasize, these speculative assumptions which could make
possible to realize the p-adicization program and understand that origin of
also effective p-adicity would pose very strong constraints on the spectrum
of zeros and are certainly testable numerically.

7.1.5 The notion of dual Zeta

These considerations lead to the idea that Riemann Zeta has a dual for
which the role of multiplicative primes is taken by the additive primes. This
function, call it ζd(u) should either vanish or diverge at points u = p. The
partition functions for super-canonical conformal weights define analogs of
Riemann Zeta involving analog of restriction of summation to integers which
are products of even and odd integers and these functions indeed are singular
at powers u = pkx, x = 2πk/y, k = 1, 2, ..., where the transcendental values
x do not depend on p. That the singularities do not occur for rational values
of u is physically very satisfactory since this would mean that the scattering
rates could become infinite.

The precise dual ζd of ζ would be the function

ζd(u) =
∑

∑
n(y)y,y∈Y

ui
∑

n(y)y =
∏

y>0,y∈Y

1
1− uiy

, (91)
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where the summation is over all possible formal linear combinations of pos-
itive imaginary parts y of zeros or subset of them with non-negative co-
efficients n(y). In the case that the zeros of Riemann Zeta are linearly
independent, the set Y corresponds to all zeros. If the zeros are of the form
y = yPi + q2π, q ∈ Q0, one can restrict the consideration to a subset Y
of zeros obtains by selecting only single value of q ∈ Q0 for each yPi . The
simplest option is that q is same for all values of yPi .

The interpretation as a product of bosonic partition functions defined
by the zeros of ζ or subset of them, obviously makes sense, and the form of
the partition function is the same as that of Riemann Zeta in the product
representation. By writing u = ρexp(iφ), φ ≥ 0 one finds that all terms in
the product converge if the term corresponding to the smallest value ymin '
14.124725 of y converges. This gives the condition φ > 1/ymin ∼ 2π/14. One
can however extract arbitrary number of the lowest terms in the product as
a separate well-defined factor and obtain a convergence above arbitrarily
small φmin = ε > 0. Thus the product is well-defined arbitrary near to real
axis above it.

The limit φ → 2π is well-defined and at z = ρei2π, ρ > 0 the product
can be written as

ζd(ρei2π) =
∏

y∈Y

1
1− ρ−2πyρiy

. (92)

This expression converges to a finite result at the real axis and pole is not
possible. This expression is not consistent with the requirement that u →
1/u induces a complex conjugation of ζd at the real axis.

The conjecture is that the limit φ → 0+ limit of ζd vanishes or diverges
for u = p±1. Also now the powers of up = pkx define poles of the individual
factors in the product at real axis. For u = p one can write

ζd(p)ζd(p) =
∏

y>0,y∈Y

1

4sin2
[

φ(p,y)+φP (y)
2

] . (93)

Here U refers to the subset of zeros of Zeta. This expansion diverges for
sin2[(φ(p, y) + φP (y))/2] < 1/4 for sufficiently many values of y. An inter-
esting possibility inspired by the connection with braid groups and Beraha
numbers Bn = 4cos2(π/n) is that the numbers 4cos2 [φ(p, y)] are Beraha
numbers so that one would have φ(p, y) = π/n(p, y), n(p, y) ≥ 3. For
n(p, y) ≥ 3 and φP (y) = 0, all factors in the product would be larger than
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or equal to one so that the product would diverge. The vanishing would
be thus due the Pythagorean phases. Of course, these arguments cannot
be however taken completely seriously since the product expansion does not
converge at the real axis.

Also the zeros zi = 1/2+iyi, yi > 0, are generators of an Abelian algebra
with integers n/2+

∑
i niyi,

∑
ni = n > 0. The corresponding zeta function

is

ζd(u) =
∏

y∈Y

1

1− u−
1
2
−iy

. (94)

This function has even nearer resemblance to the ordinary ζ. Interestingly,
the product

∏
d ζd(p) satisfies the identity

∏
p

ζd(p) =
∏

y∈Y

ζ(
1
2

+ y) , (95)

if one exchanges freely the order of producting. The fact that all factors
on the right hand side vanish would suggest that also ζd(p) vanishes for all
values of p.

7.2 Why the zeros of Zeta should correspond to number the-
oretically allowed values of conformal weights?

The following argument provides support for the belief that the conformal
weights s = 1/2+ iy for which p1/2+iy exist in a finite-dimensional extension
of rationals for all values of prime p, indeed correspond to the non-trivial
zeros of Zeta.

1. The basic idea of the number theoretical approach is that the confor-
mal weights 1/2 + iy are such that the radial waves r−1/2−iy exist for
all rational (and thus for integer) values of r in some finite-dimensional
extension of rationals. The logarithms log(n) of integers can be inter-
preted as quantum numbers of a system defined by an arithmetic quan-
tum field theory and Zeta function ζ =

∑
n n−iy−1/2 with s = 1/2+ iy

interpreted as an inverse temperature, defines the partition function
of this system.

2. On the other hand, so called Selberg’s Zeta function characterizes the
eigen values of the Laplacian in 2-dimensional quantum billiard sys-
tems defined in the fundamental domain of some hyperbolic subgroup
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G of SL(2, Z) acting in the hyperbolic plane SL(2, R)/SO(2) [39].
The fundamental domain is analogous to a box containing the parti-
cle. At quantum level the boundary conditions are satisfied by sum-
ming over all the G translates of SL(2, R) invariant Green function
with respect to the second argument. Physically this is analogous to
putting to all copies of the fundamental domain an image charge. The
confinement to the fundamental domain selects from the continuous
energy spectrum a discrete sub-spectrum. Selberg’s Zeta (its loga-
rithmic derivative) has the allowed energy eigen values as its zeros
(poles). Furthermore, the energy eigen values of Laplacian are of form
E = −l(l + 1), where l = −1/2 − iy is identifiable as the counterpart
of conformal weight and has the same form as the zeros of Zeta. y
has discrete spectrum of values characterized by the choice of G. The
density of the energy eigenvalues is amazingly similar to that of Zeta.

3. On basis of above resemblances one can argue that Riemann Zeta
(its logarithmic derivative) characterizes the purely number theoretical
spectrum as its zeros (poles). If this is the case, the zeros of Zeta would
coincide with the number theoretically allowed conformal weights 1/2+
iy.

7.2.1 The p-adically existing conformal weights are zeros of Zeta
for 1-dimensional systems allowing discrete scaling invari-
ance

The obvious question is whether one could reduce number theory to symme-
try. The following considerations suggests that D ≥ 2-dimensional spaces
do not allow a system having zeros of Zeta as its spectrum.

1. The density of states of the Selberg Zeta function differs in some as-
pects from that of Zeta so that Riemann Zeta probably has no inter-
pretation as a Selberg Zeta function of a number theoretical system.
For instance, the average density of states with respect to y grows lin-
early rather than logarithmically although the fluctuating part of the
density of states is formally very similar to that of Zeta.

2. Lobatchevski space (the hyperboloid of the 4-dimensional future light
cone) has SL(2, C) as its isometry group. The energy spectrum of
Laplacian in this case is of the form E = −l(l + 2) = 1 + y2 with
l = −1 − iy and thus different from the spectrum of 2-dimensional
case and of Riemann Zeta. Due to the higher dimension of the system
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the mean density of states grows even faster than in the 2-dimensional
case so that there seems to be no hope of getting the density of states
of Riemann Zeta.

Only one-dimensional systems give hopes of the required logarithmically
varying mean density of states. The simplest candidate one can imagine is
a system with discrete scaling invariance.

1. Instead of Laplacian, and in complete accordance with the view that
conformal invariance is the key to the understanding of Riemann Zeta,
one can consider the scaling operator L0 = xd/dx acting at the half
line R+ so that the Green functions defined by the equation

(L0 + z)G(x, x1) = (xd/dx + z)G(x, x1) = δ(
x

x1
− 1) (96)

become the object of interest. The solution can be written as

G(x, x1|z) = (
x

x1
)z × θ(

x

x1
− 1) . (97)

Here θ(x) denotes the step function. The requirement that the inte-
grals ∫

G(x, x1|z1)G(x, x1|z2)dx

reduce to the inner products of ordinary plane waves when ln(x/y)
is taken as an integration variable forces the condition z = 1/2 + iy.
In fact, this might be seen as the physicist’s ”proof” of the Riemann
hypothesis.

2. Following the construction of the automorphic Green functions in the
hyperbolic plane described in [39], the next step is to form a sum
over the x− scaling transforms of G(x, x1|z) by summing over the
integer scaled values nx of x to form a well defined Green function
in the fundamental domain associated with the semigroup of integer
scalings. Any interval [n, 2n] forms a fundamental domain. This gives
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GI(x, x1|12 + iy) =
∑
n

G(nx, x1|12 + iy) =
∑
n

(
nx

x1
)

1
2
+iy

= ζ(
1
2

+ iy)× (
x

x1
)

1
2
+iy .

(98)

The resulting Green function is proportional to Riemann Zeta at the
critical line and vanishes for the zeros of Zeta. Note that the loga-
rithmic derivative of ζ divided by log(p) exists in a finite-dimensional
extension of Rp for x = n/2 + i

∑
k mkyk if the basic number theoret-

ical requirements on the phases piy defined by the zeros of Zeta are
satisfied: in particular log(p1)/log(p) must have Rp norm which ap-
proaches zero for larger values of p1. Hence the logarithmic derivative
of Zeta could codes the number theoretical physics universally.

3. In the usual approach [39] the integral of GI over the fundamental
domain would give the density of states d(E). In the recent case the
integration over the fundamental domain [1, 2] gives just ζ function

∫ 2

1
GI(x, x| − 1

2
+ iy)dx =

∑
n

n−
1
2
−iy = ζ(

1
2

+ iy) . (99)

The interpretation as a density of states is obviously not possible.
The proof for the Riemann hypothesis to be discussed later allows to
interpret the vanishing of Riemann Zeta as as orthogonality of physical
states labelled by zeros of Zeta with a tachyonic vacuum state with
a vanishing conformal weight. The vanishing of Green function could
also now have an interpretation stating that the physical states labelled
by non-trivial zeros are orthogonal to the scaling invariant tachyonic
vacuum.

4. Quite generally, the imaginary part of the logarithmic derivative of
any real function f(E) for which energy eigenvalues En correspond to
zeros of unit multiplicity, defines the density of states as a sum over
delta functions. G(y) = ζ(1/2+ iy) is real at the critical line as is also
its logarithmic derivative apart from delta function singularities of the
imaginary part at the zeros of Zeta so that its logarithmic derivative
indeed gives the density of zeros of Zeta:
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d(y) =
1
π

Im


i

dlog
[
ζ(1

2 + iy)
]

dy


 =

∑
n

δ(y − yn) . (100)

This ultra simple model realizes the idea that the logarithmic deriva-
tive of Green function naturally associated with a system invariant
under the semi-group of integer scalings codes as its poles the zeros of
Zeta. The p-adic existence of the Green function in turn is equivalent
with the requirement that the spectrum corresponds to the zeros of
Zeta.

7.2.2 Realization of discrete scaling invariance as discrete 2-dimensional
Lorentz invariance

Both the role of the hyperbolic groups and the fact that in quantum TGD
zeros of Zeta label representations of Lorentz group, encourage to think that
the 1-dimensional hyperbolic subspace t2 − x2 = constant of 2-dimensional
Minkowski space having Lorentz group SO(1, 1) as its symmetries realizes
the above described system physically. The counterpart of the hyperbolic
subgroup G of SL(2, R) would the semigroup of Lorentz transformations
defining integer scalings of the second light like coordinate:

u ≡ t + z → nu , v ≡ t− z → 1
nv .

This semigroup corresponds to the diagonal semi-subgroup of SL(2, Q) con-
sisting of matrices diag(λ, 1/lambda) = diag(n, 1/n). The reduction to semi-
group is natural by the presence of the p-adic length scale cutoff unavoidable
in p-adicization.

Taking u = t + z as the coordinate of the hyperboloid, the situation
reduces to that already considered. Infinitesimal Lorentz boost acts as a
scaling operator and its eigenvalues correspond to the zeros of Zeta by num-
ber theoretic existence requirements. The matrices diag(p, 1/p), p prime, are
completely analogous to the group elements g0 defining primitive periodic or-
bits in the higher-dimensional case so that prime numbers are naturally real-
ized as discrete Lorentz transformations. Prime Lorentz transformations and
their inverses generate rational Lorentz group. The length of the primitive
periodic orbit corresponds to the scaling parameter log(p) defining the scal-
ing by p as an exponentiated scaling transformation u → exp(log(p))u = pu.
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7.3 Zeros of Riemann Zeta as preferred super-canonical weights

Along standing heuristic basic hypothesis has been that the radial conformal
weights ∆ assignable to the functions (rM/r0)∆ of the radial coordinate rM

of δM4± in super-canonical algebra consisting of functions in δM4± × CP2

are expressible as linear combinations of zeros of Riemann Zeta. Quantum
classical correspondence in turn inspires the hypothesis that these conformal
weights can be mapped to the points of a geodesic sphere of CP2 playing
the role of conformal heavenly sphere.

The following arguments suggest that radial conformal weights in fact
depend on the point of geodesic sphere S2 ⊂ CP2 and are given in terms of
the inverse of Riemann Zeta having the natural complex coordinate of S2

as argument. This implies a mapping of the radial conformal weights to the
points of the geodesic sphere CP2. Linear combinations of zeros correspond
to algebraic points in the intersections of real and p-adic space-time sheets
and are thus in a unique role from the point of view of p-adicization. This
if one believes the basic conjecture that the numbers ps, p prime and s zero
of Riemann Zeta are algebraic numbers. The prediction is that the zeros
of Riemann Zeta correspond to radial conformal weights for which system
is critical against a phase transition changing the value of Planck constant
[C1]. Zeros of Zeta have been indeed associated with critical systems. One
application would be to high Tc superconductivity.

7.3.1 Basic argument

The basic argument runs as follows.

1. Let us start from the idea that the discrete set of points of the geodesic
sphere S2 of CP2 labelling commuting R-matrices should correspond
to the super-canonical conformal weights ∆ assignable to the func-
tions (rM/r0)∆ of the radial light-like coordinate rM of δM4± in super-
canonical Hamiltonians.

2. This discrete set of conformal weights should correspond to a discrete
set of points at the partonic 2-surface X2 defined as the intersection
of 3-D light-like causal determinant X3

l defining the orbit of parton
and δM4± × CP2. This selection of a discrete subset of points in the
CP2 projection of X2 would make it possible to realize radial conformal
weights as points of a ”heavenly sphere” defined by the CP2 projection.
A homologically non-trivial geodesic sphere S2 ⊂ CP2 would provide
a natural complex coordinate for the projection with S2 isometries
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acting as Möbius transformations for the preferred complex coordinate
z shared by X2 and S2 ⊂ CP2. This assumption is however un-
necessarily strong as will be found.

3. The finite set of points having interpretation as a braid would belong to
a ”time=constant” section of 2-dimensional ”space-time”, presumably
circle, defining physical states of a two-dimensional conformal field
theory for which the scaling operator L0 takes the role of Hamiltonian.

7.3.2 Radial conformal weight as a function of CP2 coordinates

One can criticize the idea of assigning radial conformal weights with CP2

points as an ad hoc procedure. Nothing however prevents of modifying the
original definition of Hamiltonians of δM4± × CP2.

1. Suppose that the factors 1/(1 + piy) of Riemann Zeta in the product
representation are universal for its zeros in the sense that the power
piy for primes p always belong to some finite-dimension extension of
rationals for the zeros s = 1/2 + iy of ζ.

2. One could redefine the configuration space Hamiltonians by assuming
that radial conformal weights ∆ are functions of CP2 coordinates so
that the radial parts of Hamiltonians would be of form (rM/r0)∆(s).

3. For instance, one could have ∆ = ζ−1(ξ1/ξ2), where ξi are complex
CP2 coordinates transforming linearly under group U(2): CP2 itself
parameterizes these coordinate choices. For a given value of r = rM/r0

one should select some branch of the inverse of ζ in this formula.
Branches are in one-one correspondence with zeros of Zeta and they
could be in one-one correspondence with partonic 2-surfaces assignable
to a given 3-surface. If the number theoretical universality holds true
then the values of ξ1/ξ2 = ζ(

∑
k nksk), where sk are zeros of ζ, de-

fine the preferred points of CP2 and thus of partonic 2-surface and
conformal weights are quantized number theoretically. An interesting
question is whether these values of ζ are algebraic numbers.

4. This picture suggest a large number of fractal hierarchies with anoma-
lous dimensions defined by the linear combinations of imaginary parts
of zeros of Zeta. At a given partonic 2-surface the branch s1 of
s = ζ−1 can change to s2 at radial points satisfying (rM/r0)s1 =
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(rM/r0)s2 . This gives Re(s1) = Re(s2) so that the change can oc-
cur only along a line parallel to the critical line. The second condi-
tion is (Im(s1) − Im(s2))log(rM/r0) = n2π and can be satisfied for
any pair of linear combinations of zeros of Zeta at points rM/r0 =
exp[Im(s1)− Im(s2))n2π].

5. One can worry about the non-uniqueness of the selection of preferred
CP2 coordinates. As a matter fact, in its recent form the construction
of configuration space as a union of sub-configuration spaces involves,
not only a selection of the tip of the light cone of M4, but also a
selection of a preferred point of CP2 so that the points of H label sub-
configuration spaces [C8]. The physical interpretation is in terms of a
geometric correlate for the selection of Cartan algebra of commuting
color charges.

6. The requirement that the Hamiltonian belongs to an algebraic exten-
sion of p-adic numbers forced by the p-adicization constraint would
select a discrete set of points of X2. Thus the discrete spectrum
of conformal weights expressible in terms of zeros of Riemann Zeta
would result from the number theoretical quantization forced by the
p-adicization constraint.

7.3.3 Why a discrete set of points of partonic 2-surface must be
selected?

As already noticed, p-adicization might provide a deeper motivation for the
selection of discrete subset of points of partonic 2-surface in the construction
of S-matrix elements in the case of non-diagonal transitions between different
number fields.

1. The fusion of p-adic variants of TGD with real TGD, could be possible
by algebraic continuation. This however requires the restriction of n-
point functions to a finite set of algebraic points of X2 with the usual
stringy formula formula for S-matrix elements involving an integral
over a circle of X2 replaced with a sum over these points.

2. The same universal formula would give not only ordinary S-matrix
elements but also those for p-adic-to-real transitions describing trans-
formation intentions to actions. Quite generally, the formula would
express S-matrix elements for transitions between two arbitrary num-
ber fields as algebraic numbers so that p-adicization of the theory
would become trivial.
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3. The interpretation of this finite set of points as a braid suggests a
connection with the representation of Jones inclusions in terms of a
hierarchy of braids [C7, E9] with the increasing number of strands
meaning a continually improved finite-dimensional approximation of
the hyper-finite factor of type II1 identifiable as the Clifford algebra
for the configuration space. The hierarchy of approximations for the
hyper-finite factor would correspond to a genuine physical hierarchy
of S-matrices corresponding to increasing dimension of algebraic ex-
tension of various p-adic numbers. This hierarchy would also define a
cognitive hierarchy.

What could then be this discrete set of points having interpretation as
a braid?

1. Number theoretical vision suggests that quantum TGD involves the
sequence hyper-octonions → hyper-quaternions→ complex numbers→
reals → finite field G(p, 1) or of its algebraic extension. These re-
ductions would define number theoretical counterparts of dimensional
reductions. The points in the finite field G(p, 1) could be defined by p-
adic integers modulo p so that a connection with p-adic numbers would
emerge. Also more general algebraic extensions of p-adic numbers are
allowed.

2. If the exponents piy for the zeros z = 1/2 + iy of Zeta are algebraic
numbers, the linear combinations for a finite subset of them for a
given algebraic extension of p-adic numbers would naturally represent
preferred points of S2 ⊂ CP2 using the group-theoretically preferred
complex coordinate z of S2. Note that radial coordinate which itself
is expressible in terms of CP2 coordinates when partonic 2-surface
has 2-dimensional CP2 projection, must be rational which poses also
conditions on the allowed set of points.

3. If the radial conformal weights are expressible in terms of CP2 coor-
dinates, such that for a restriction to S2 ⊂ CP2 one has ∆ = ζ−1(z =
ξ1/ξ2), the basic condition would be that r = rM/r0 is rational and
r∆ belongs to the algebraic extension of p-adic numbers used. The ra-
tionality of rM (z) as function of coordinate z would select a subset of
linear combinations s =

∑
nksk of zeros of Zeta. This is not the only

possibility. If one assumes that scaling invariant integration measure
dr/r defines the inner product then s = 1/2 +

∑
k nkyk defines a set

of orthogonal ”planewaves”.
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7.3.4 What is the fundamental braiding operation?

The basic quantum dynamics of TGD could define the braiding operation for
the braid defined by a discrete set of points of X2 satisfying the algebraicity
conditions.

1. The complex coordinate z of X2 is defined by the conformal equiva-
lence class of the induced metric of X2 apart from conformal transfor-
mation and positions of punctures are expressed using this coordinate.

2. The selection of the radial coordinate rM defines a rest system and
thus a foliation of M4± by light-cone boundaries parameterized by M4

time coordinate m0 giving the temporal location of the tip of δM4±
along the line rM = 0. This foliation defines also a foliation of the
partonic orbit defined by the light-like 3-surface X3

l by partonic 2-
surfaces X2(m0). Each of these surfaces defines a number theoretic
braid and one expects that the positions of the punctures of braid
expressed using coordinate z evolve most of the time in a continuous
manner so that the braiding flow is well-defined. If one has ∆ =
ζ−1(z1 = ξ1/ξ2) then z1 remains constant during the flow and only
z changes meaning that M4 projection corresponding to z1 changes.
Hence, if M4 projection is 2-dimensional, the braiding flow can be
regarded as a flow defined at M4 projection, which of course conforms
with the physical picture.

3. More concretely, let M4 projection of X2 be 2-dimensional and CP2

projection 1-dimensional. For a given linear combination s =
∑

nksk

of zeros of Riemann Zeta the inverse image is a 1-dimensional curve of
X2 and the rational values for the graph of rM at this curve with the
property that (rM/r0)s belongs to the algebraic extension of p-adic
numbers in question define the threads of the braid. The flow means
that the position of these punctures in coordinate plane defined by the
complex coordinate z move. If CP2 projection is 2-dimensional, the
set of values of rational values of rM for which (rM/r0)s belongs to
the algebraic extension of p-adic numbers, consists of discrete points
and by a judicious choice of r0 this can be guaranteed always.

4. New points can appear to and old points disappear from the braid
so that a structure more general than a mere braid is in question. It
would not be surprising if the points satisfying algebraicity conditions
disappear or are created in pairs. If this is the case, a tangle like struc-
ture allowing topological particle pair creation and annihilation would
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be in question. Indeed, if the CP2 projection of X2 is 1-dimensional,
the rational values of rM/r0 satisfying the basic constraint appear pair-
wise around extrema and when the shape of the graph of rM changes,
these values disappear or appear in pairwise manner.

5. This picture makes sense also for macroscopic 2-surfaces defining outer
boundaries of physical systems (quantum Hall effect and topological
quantum computation [E9]).

7.3.5 Do zeros of Riemann ζ correspond to critical conformal
weights for h̄ changing phase transitions?

Zeros of Riemann Zeta have been for long time speculated to closely relate
to fractal and critical systems. If the proposed general ansatz for super-
canonical radial conformal weights holds true, these speculations find a
mathematical justification.

Geometrically the transition changing the value of h̄(M4) correspond
to a leakage of partonic 2-surfaces between different copies of M4 × CP2

with same CP2 factor and thus same value of h̄(CP2). Critical 2-surfaces
can be regarded as belonging to either factor which means that points of
critical 2-surfaces must correspond to the CP2 orbifold points, in particular,
z = ξ1/ξ2 = 0 and z = ξ1/ξ2 = ∞ remaining invariant under the group
G ⊂ SU(2) ⊂ SU(3) defining the Jones inclusion, that is the north and
south poles of homologically non-trivial geodesic sphere S2 ⊂ CP2 playing
the role of heavenly sphere for super-canonical conformal weights. If the
hypothesis ∆ = ζ−1(z) is accepted, the radial conformal weight corresponds
to a zero of Riemann Zeta: ∆ = sk at quantum criticality.

At quantum level a necessary prerequisite for the transition to occur is
that radial conformal weights, which are conserved quantum numbers for
the partonic time evolution, satisfy the constraint ∆ = sk. The partonic 2-
surfaces appearing in the vertices defining S-matrix elements for the phase
transitions in question need not be of the required kind. It is enough that
∆ = sk condition allows their evolution to any sector of H in question.
An analogous argument applies also to the phase transitions changing CP2

Planck constant.
Quantum criticality for high temperature super-conductivity [J1, J2, J3]

could provide an application for this vision. The super conducting stripe like
regions are assumed to carry Cooper pairs with a large value of M4 Planck
constant corresponding to n = 211. The boundary region of the stripe
is assumed to carry Cooper pairs in critical phase so that super-canonical
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conformal weights of electrons should satisfy ∆ = sk in this region. If the
members of Cooper pair have conjugate conformal weights, the reality of
super-canonical conformal weight is guaranteed. The model predicts that
the critical region has thickness L(151) whereas scaled electron with n = 211

effectively correspond to L(127 + 22) = L(149), the thickness of the lipid
layer of cell membrane.

These observations in turn lead to the hypothesis that cell interior cor-
responds to a phase with large M4 Planck constant h̄(M4) = 211h̄0 and cell
membrane to a quantum critical region where the above mentioned condi-
tion ∆ = sk is satisfied. Thus it would seem that the possibility of ordinary
electron pairs to transform to large h̄ Cooper pairs is essential in living mat-
ter and that the transition takes place as the electron pairs traverse cell
membrane. The quantum criticality of cell membrane might prevail only in
a narrow temperature range around T=37 C. Note that critical temperature
range can also depend on the group G having Cn, n = 211 cyclic group as
maximal cyclic group (Cn and Dn are the options).

7.3.6 What about zeros of Riemann poly-zeta?

As already found Riemann poly-zetas ζn(∆1, ...,∆n) could allow to gener-
alize the notion of binding energy to that of binding conformal weight. In
this case zeros form a continuum so that the set of points (∆1, ...,∆n) =
ζ−1
n (z = ξ1/ξ2) forms a n-1 complex dimensional surface in Cn. Completely

symmetrized polyzetas are expressible using products of Riemann Zetas for
arguments which are sums of arguments for polyzeta. If ∆i are linear combi-
nations of zeros of Zeta, polyzeta involves Riemann Zeta only for arguments
which are sums of zeros of ζ. Symmetrized polyzeta is non-vanishing when
∆i are non-trivial zeros of Zeta but vanishes for trivial zeros at ∆i = −2ni.
Also the zeros of symmetrized polyzeta would have interpretation in terms
of quantum criticality.

An interesting question is whether ζn has a discrete subset of zeros for
which p∆i is algebraic number for all primes p and ∆i. This could be the
case. For instance, suitable linear combinations of zeros of ζ define zeros of
polyzeta. For instance, (a, b) = (s1, s1 − s2) for any pair of zeros of zeta is
zero of P2(a, b) = ζ(a)ζ(b)−ζ(a+b) whereas (a1, a2, a3) = (s1, s2−s1, s2−s1)
defines a zero of

P3(a1, a2, a3) = 2ζ(a1 + a2 + a3) + ζ(a1)P2(a2, a3) + ζ(a2)P2(a3, a1)
+ζ(a3)P2(a1, a2)− 2ζ(a1)ζ(a2)ζ(a3)
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for any pair (s1, s2) of zeros of ζ.
The conditions state that all Pm:s, m < n in the decomposition of Pn

vanish separately. Besides this one ak, say a1 = s1 must correspond to a
zero of ζ. Same is true for the sum σak and sub-sums involving a1. The
number of conditions increases rapidly as n increases. In the case of P4 the
three triplets (a1, ai, aj) must be of same form as n = 3 case and this allows
only the trivial solution with say a4 = 0. Thus it would seem that only
n = 2 and n = 3 allow non-trivial solutions for which bound state conformal
weights are expressible in terms of differences of zeros of Riemann ζ. What
is nice that the linear combinations of these conformal multi-weights give
total conformal weights which are linear combinations of zeros of zeta.

The special role of 2- and 3-parton states brings unavoidably in mind
mesons and baryons and the fact that hadrons containing larger number of
valence quarks have not yet been identified experimentally.

If conformal confinement holds true then physical particles have van-
ishing conformal weights. This would require that ordinary baryons and
mesons have real conformal weights and cannot therefore correspond to this
kind of states. One must however take the notion of conformal confinement
very critically. The point is that the one-dimensional logarithmic plane
waves x1/2+iy have unitary inner product with respect to the scaling invari-
ant inner product defined by the integration measure dx/x. For this inner
product, the real part of the conformal weight should be 1/2 as it indeed
is for the solutions of the conditions. If this interpretation is correct, then
hadrons would represent states with non-vanishing conformal weight.

If one accepts complex conformal weights one must have some physical
interpretation for them. The identification of conjugation of zeros of zeta as
charge conjugation does not look promising since it would not leave neutral
pion invariant. Of course, critical configurations with real conformal weight
are possible at least formally and would correspond to trivial zeros s2 = −2n
of ζ but s1 arbitrary zero. These configuration would not however define
logarithmic plane waves.

Laser physics might come in rescue here. So called phase conjugate
photons are known to behave differently from photons. I have already pro-
posed that all particles possess phase conjugates in TGD Universe. Phase
conjugation is identified as reversal of time arrow mapping positive energy
particles to negative energy particles. At space-time level this would mean
an assignment of time orientation to space-time sheet. This is consistent
with the fact that energy momentum complex consists of vector currents
rather than forming a tensor. The implication is that in S-matrix positive
energy particles travelling towards geometric future are not equivalent with
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negative energy particle travelling towards geometric past. This is essential
for the notions like remote metabolism and time mirror mechanism.

The precise definition of phase conjugation at quantum level has re-
mained obscure. The identification of phase conjugation as conjugation for
the zeros of Zeta looks however very natural.

8 Can one formulate Quantum TGD as a quantum
field theory of some kind?

The super-canonical generalization of a 2-dimensional conformal field theory
seems to be indispensable for the construction of S-matrix at the fundamen-
tal level and defines the vertices as n-point functions of a conformal field
theory in turn used to construct S-matrix as tree diagrams. It is however
not at all obvious whether QFT like formulation in a more general sense
really makes sense or that it is even needed.

Certainly it is clear that standard quantum field theory starting from
an action principle and defining perturbation theory is out of question since
it contradicts the basic assumption that S-matrix elements reduce to tree
diagrams. This leaves two options.

1. The action of the possibly existing field theory limit must correspond
to an effective action for one-particle irreducible (1PI) Green’s func-
tions from which Green’s functions and S-matrix elements are obtained
as tree diagrams. 1PI Greens function must correspond to the vertices
identifiable as n-point functions of a conformal field theory for which
super-canonical algebra defines the conformal fields.

2. If quantum TGD allows a formulation as a QFT, the formulation must
be such that it effectively reduces to a free field theory. This is required
by the vanishing of loops implying localization in the configuration
space also necessary for the p-adicization of the theory.

8.1 Could one formulate quantum TGD as a quantum field
theory at the absolute minimum space-time surface?

The original naive belief when I started to develop TGD for 25 years ago
was that something like functional integral using EYM action coupled to
induced spinor fields would define the quantum theory. The belief turned
out to be wrong and the conclusion was that this kind of approach might
make sense only as a quantum field theory limit of TGD. The philosophy
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just described and the view that space-time physics represents only classical
correlates for the underlying configuration space physics however makes even
the idea about the existence of quantum field theory limit questionable.

On the other hand, one could defend the existence of some kind of QFT
type formulation by quantum classical correspondence and by the fact that
the phenomenology based on the notion of classical induced gauge fields has
been extremely fruitful. One could even hope that the theory would allow
formulation as some kind of field theory at X4(X3) or even better, at X3 so
that a minimum amount of information about the absolute minimum would
be needed in accordance with the gravitational hologram principle.

8.1.1 Does the modified Dirac action for the induced spinor fields
define the QFT description of quantum TGD?

The constraints satisfied by the QFT formulation of quantum TGD are so
strong that the formulation is essentially unique.

1. The QFT in question should be determined by the absolute minimum
X4(X3) of Kähler action corresponding to a given causal determinant
(7-dimensional light like surface X3

l × CP2) rather than in M4. The
averaging over all Poincare and color translates of this space-time sur-
face would give rise to an S-matrix respecting the basic symmetries.
Note that the theory would be 3-D quantum field theory at X3. The
only information needed about X4(X3) would be the time derivatives
of the imbedding space coordinates at X3. Also the value of Kähler
action seems to be needed but even the exponent of Kähler function
might disappear from the Greens functions in normalization just as
the exponent eG of the generating functional G of connected Green’s
functions disappears in the quantum field theory.

The effective 3-dimensionality has an interesting connection to unre-
solved difficulties encountered in the attempt to formulate bound state
problems in quantum field theory context. Non-relativistic, essentially
3-dimensional, Schrödinger equation works and yield correct predic-
tions whereas Bethe-Salpeter equation in Minkowski space fails. The
TGD based explanation of this failure is that bound state formation
means that 3-surfaces of particles involved form a join along boundaries
condensate. This means that non-relativistic 3-dimensional formula-
tion is necessary in order to catch the essential aspects of the physics
involved. In quantum field theory context point-likeness of the parti-
cles allows only the modelling of those aspects of particle interactions
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which do not involve bound states.

2. To calculate correlation functions one should expand the super-canonical
generators as functional Taylor series around the maximum of the
Kähler function at the 3-surface X3. If super-canonical generators
can be regarded as functionals of the second quantized induced spinor
field ψ, also the functional series with respect to ψ is needed. This
would make it possible to evaluate the correlation functions pertur-
batively in terms of the tree diagrams defined by the effective action
using bosonic and fermionic propagators defined by it. One would cal-
culate M4 Fourier transforms of the correlation functions and integra-
tion over Poincare translates would give Poincare invariant correlation
functions.

3. The complete localization at configuration space level means the van-
ishing of the bosonic loops and effective freezing of configuration space
degrees of freedom. This is achieved if the action is such that the
bosonic part vanishes when the induced spinor fields vanish. I have
represented in [B4] arguments that the action for the induced spinor
fields treated as Grassman variables is all that is needed to define
quantum physics. Kähler action would be the effective action asso-
ciated with the Dirac action. The approach would also predict the
possible values of Kähler coupling strength as part of data character-
izing the effective action. This approach also conforms with the fact
that elementary bosons are predicted to be bound states of fermion-
anti-fermion pairs.

This approach would also bring induced electro-weak gauge potentials
into play so that quantum-classical correspondence would be realized.
The absence of quark color as spin like quantum number of induced
spinor fields would not be a problem. Also the topologization of the
family replication phenomenon in terms of the genus of 2-surface would
result without representation as an additional spin like degeneracy of
fermion fields. The super-canonical and super Kac-Moody conformal
algebras would be however an essential element of the picture.

4. The action would be the modified Dirac action for the induced spinor
fields at the maximum of the Kähler function. Modified Dirac action
is defined by replacing the induced gamma matrices Γα = ∂αhkΓk by
the modified gamma matrices
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Γ̂α =
∂(L

√|g|)
∂(∂αhk)

Γk . (101)

Here L denotes the action density of Kähler action and Γk denotes
gamma matrices of the imbedding space H. Modified Dirac action is
supersymmetric and shares the vacuum degeneracy of Kähler action
[B4].

The fermionic propagator would be defined by the inverse of the modi-
fied Dirac operator. Bosonic kinetic term would be Grassmann algebra
valued and vanish for ψ = 0 and would contribute nothing to the per-
turbation series. Since the fermionic action is free action, a divergence
free quantum field theory would be in question irrespective of whether
the fermionic action is interpreted as an action or an effective action.
One could also see the action as a fixed point of the map sending ac-
tion to effective action in a complete accordance with the idea that
loop corrections vanish.

5. The nice feature of this approach is that the information needed about
the absolute minimum would be minimal since one can restrict the con-
sideration to 3-surface X3 which can be selected arbitrarily. In fact,
the outcome is a 3-dimensional free field theory in the fermionic degrees
of freedom and the integral over Poincare and color translates guar-
antees isometry symmetries. Grassmannian functional integral would
give exponent of Kähler function as the analog of the generating func-
tional G for connected Green functions. The functional derivatives of
the configuration space spinor field with respect to the induced spinor
field are very simple by the conservation of fermion number. This ap-
proach could be seen as an alternative approach to calculate n-point
functions by treating fermionic fields as Grassmann fields whereas in
the super-algebra approach fermionic fields would be second quantized.

8.1.2 Vacuum extremals and the fractality of super-canonical
propagator

For vacuum extremals the propagator defined by the modified Dirac oper-
ator becomes singular. The interpretation as a space-time correlate for the
singular behavior of the scalar propagator defined as a partition function in
super-canonical algebra is suggestive.

Two different models for the scalar propagator were considered.
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1. In the first case all physical super-canonical conformal weights were
assumed to contribute and the resulting propagator has besides the
ordinary pole infinite number of delta function type resonances. The
real inverse of the propagator is poorly defined at the continuum limit.
The mass squared values of the resonances are transcendental numbers
and do not contribute at all to propagation assuming that the virtual
momentum square values are rational or algebraic numbers. Therefore
all p-adicizations of the propagator are trivial.

2. For the second option only the ”holomorphic” sub-algebra of confor-
mal weights contributes to the partition function. In this case a very
complex spectrum of resonances, which are now poles, emerges. Also
now singularities correspond to transcendental values of mass squared
so that singular S-matrix elements are avoided when rational cutoff is
used. The inverse of the propagator is well-defined but at the limit
when all non-trivial zeros of Riemann Zeta are included both the prop-
agator and itse inverse extremely singular mathematically. Obviously
the kinetic part of the local field theory action for M4 field theory
would be very awkward at this limit and would not provide anything
new.

The only manner to avoid filling the entire phase space with resonances, is to
assume a physical (rather than only fictive) hierarchy of p-adic length scale
and phase resolution cutoffs defined by the hierarchy of sub-algebras of the
super-canonical algebra defined by the first n non-trivial zeros of Riemann
Zeta.

As noticed, the ordinary perturbation theory fails for the vacuum ex-
tremals of Kähler action since the modified Dirac operator vanishes in this
case identically. One might expect that the propagator develops a lot of sin-
gularities in the vicinity of vacuum extremals. Caustics would be the analog
in the classical Maxwell’s theory so that these singularities are expected to
be very important physically. This singular behavior could correspond to
the predicted presence of a dense set of singularities (delta function or pole
singularities depending on the option) for the super-canonical propagator
at the limit when all zeros of Zeta are included. If this were the case the
limit as the cutoff N for the number of non-trivial zeros of Riemann Zeta
included goes to infinity, would correspond to the approach to a vacuum
extremal. Physically this would mean that zero modes would approach to a
limit at which configuration space metric becomes degenerate. In particu-
lar, the dimension of CP2 projection would approach D ≤ 2 since Lagrange
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sub-manifold is in question. The sub-algebras of super-canonical algebra
would classify the phases represented by space-time sheets and also confor-
mal equivalence classes of the configuration space metric. Super-canonical
algebra has infinite number of infinite-dimensional sub-algebras and each
could correspond to a vacuum extremals. Note that the partition function
hypothesis would effectively mean the explicit calculation of the n-point
functions from symmetry considerations so that QFT limit would only pro-
vide the interpretation in terms of space-time physics rather than being a
practical tool.

The zeros of Riemann Zeta are known to be associated with chaotic
systems and vacuum extremals indeed correspond to chaotic systems by their
non-deterministic behavior. The interpretation of the vacuum extremals
as space-time correlates for engineered world (recall the non-determinism)
conforms with this picture. The freedom to engineer would apply even to the
mass spectrum of particles realized as a freedom to choose the sub-algebra
of the super-canonical algebra.

8.2 Could field theory limit defined in M4 or H be useful?

The general vision behind quantum TGD suggests that the field theory limit
should not contain any dependence on the details of space-time surfaces.
Thus it should be defined in either M4 or M4 × CP2. The theory would
be defined by an effective action defining the vertices and propagators and
tree diagrams would give the n-point functions and S-matrix elements. No
problems with loop divergences would be encountered.

At least formally one could start from vertices and propagators de-
fined by n-point functions of the conformal field theory as function of four-
momenta and other quantum numbers of the incoming particles and in-
terpret them as local vertices involving differential operators in Minkowski
space. Assuming that the proper 2-point functions Γ2) identifiable as the
inverse of the connected two point function G

2)
c exist, one could interpret

them as analogs of the operators defining the differential operators defin-
ing the kinetic part of the effective action. The construction of the scalar
propagator as a partition function for the super-canonical algebra however
suggests that the Γ2) fails to exist at the continuum limit without cutoff
for the number of the zeros. As already described, an entire hierarchy of
these functions involving physical length scale and phase resolution cutoffs
is involved and has interpretation in terms of approach to vacuum extremal.

When the propagators defined as super-canonical are defined for finite
sub-algebras of a holomorphic super-canonical algebra, the propagator and
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its inverse are well defined in momentum space. It is not obvious whether
the construction of a local field theory in M4 by using the inverse brings in
anything interesting.

The cautious conclusion would be that effective field theory limit makes
sense in M4 only by taking the propagators and vertices defined as n-point
functions of the conformal field theory and using momentum space Feynman
rules to build tree diagrams. The QFT limit could be seen as low energy
approximation obtained by taking into account the vertices involving light
particles.

9 Appendix A: Some examples of bi-algebras and
quantum groups

The appendix summarizes briefly the simplest bi- and Hopf algebras and
some basic constructions related to quantum groups.

9.1 Simplest bi-algebras

Let k(x1, .., xn) denote the free algebra of polynomials in variables xi with
coefficients in field k. xi can be regarded as points of a set. The alge-
bra Hom(k(x1, ..., xn), A) of algebra homomorphisms k(x1, ..., xn) → A can
be identified as An since by the homomorphism property the images f(xi)
of the generators x1, ...xn determined the homomorphism completely. Any
commutative algebra A can be identified as the Hom(k[x], A) with a par-
ticular homomorphism corresponding to a line in A determined uniquely by
an element of A.

The matrix algebra M(2) can be defined as the polynomial algebra
k(a, b, c, d). Matrix multiplication can be represented universally as an alge-
bra morphism ∆ from from M2 = k(a, b, c, d) to M⊗2

2 = k(a′, a′′, b′, b′′, c′, c′′, d′, d′′)
to k(a, b, c, d) in matrix form as

∆

(
a b
c d

)
=

(
a′ b′

c′ d′

) (
a′′ b′′

c′′ d′′

)
.

This morphism induces algebra multiplication in the matrix algebra M2(A)
for any commutative algebra A.

M(2), GL(2) and SL(2) provide standard examples about bi-algebras.
SL(2) can be defined as a commutative algebra by dividing free polynomial
algebra k(a, b, c, d) spanned by the generators a, b, c, d by the ideal det−1 =
ad− bc− 1 = 0 expressing that the determinant of the matrix is one. In the

125



matrix representation µ and η are defined in obvious manner and µ gives
powers of the matrix

A =

(
a b
c d

)
.

∆, counit ε, and antipode S can be written in case of SL(2) as
(

∆(a) ∆(b)
∆(c) ∆(d)

)
=

(
a b
c d

)
⊗

(
a b
c d

)
,

(
ε(a) ε(b)
ε(c) ε(d)

)
=

(
1 0
0 1

)
.

S

(
a b
c d

)
= (ad− bc)−1

(
d −b
−c a

)
.

Note that matrix representation is only an economical manner to summarize
the action of ∆ on the generators a, b, c, d of the algebra. For instance, one
has ∆(a) = a → a ⊗ a + b ⊗ c. The resulting algebra is both commutative
and co-commutative.

SL(2)q can be defined as a Hopf algebra by dividing the free algebra
generated by elements a, b, c, d by the relations

ba = qab , db = qbd ,
ca = qac , dc = qcd ,
bc = cb , ad− da = (q−1 − 1)bc ,

and the relation
detq = ad− q−1bc = 1

stating that the quantum determinant of SL(2)q matrix is one.
µ, η,∆, ε are defined as in the case of SL(2). Antipode S is defined by

S

(
a b
c d

)
= det−1

q

(
d −qb

−q−1c a

)
.

The relations above guarantee that it defines quantum inverse of A. For q
an nth root of unity, S2n = id holds true which signals that these parameter
values are somehow exceptional. This result is completely general.

Given an algebra, the R point of SLq(2) is defined as a four-tuple
(A, B,C, D) in R4 satisfying the relations defining the point of SLq(2). One
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can say that R-points provide representations of the universal quantum al-
gebra SLq(2).

9.2 Quantum group Uq(sl(2))

Quantum group Uq(sl(2)) or rather, quantum enveloping algebra of sl(2),
can be constructed by applying Drinfeld’s quantum double construction (to
avoid confusion note that the quantum Hopf algebra associated with SL(2)
is the quantum analog of a commutative algebra generated by powers of a
2× 2 matrix of unit determinant).

The commutation relations of sl(2) read as

[X+, X−] = H , [H,X±] = ±2X± . (102)

Uq(sl(2)) allows co-algebra structure given by

∆(J) = J ⊗ 1 + 1⊗ J , S(J) = −J , ε(J) = 0 , J = X±,H ,

S(1) = 1 , ε(1) = 1 .
(103)

The enveloping algebras of Borel algebras U(B±) generated by {1, X+,H}
{1, X−, hH} define the Hopf algebra H and its dual H? in Drinfeld’s con-
struction. h could be called Planck’s constant vanishes at the classical limit.
Note that H? reduces to {1, X−} at this limit. Quantum deformation pa-
rameter q is given by exp(2h). The duality map ? : H → H? reads as

a → a? , ab = (ab)? = b?a? ,
1 → 1 , H → H? = hH , X+ → (X+)? = hX− .

(104)

The commutation relations of Uq(sl(2) read as

[X+, X−] = qH−q−H

q−q−1 , [H, X±] = ±2X± . (105)

Co-product ∆, antipode S, and co-unit ε differ from those U(sl(2)) only in
the case of X±:

∆(X±) = X± ⊗ qH/2 + q−H/2 ⊗X± ,

S(X±) = −q±1X± .

(106)
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When q is not a root of unity, the universal R-matrix is given by

R = q
H⊗H

2
∑∞

n=0
(1−q−2)n

[n]q ! q
n(1−n)

2 q
nH
2 Xn

+ ⊗ q−
nH
2 Xn− . (107)

When q is m:th root of unity the q-factorial [n]q! vanishes for n ≥ m and
the expansion does not make sense.

For q not a root of unity the representation theory of quantum groups is
essentially the same as of ordinary groups. When q is mth root of unity, the
situation changes. For l = m = 2n nth powers of generators span together
with the Casimir operator a sub-algebra commuting with the whole alge-
bra providing additional numbers characterizing the representations. For
l = m = 2n + 1 same happens for mth powers of Lie-algebra generators.
The generic representations are not fully reducible anymore. In the case of
Uq(sl(2)) irreducibility occurs for spins n < l only. Under certain conditions
on q it is possible to decouple the higher representations from the theory.
Physically the reduction of the number of representations to a finite number
means a symmetry analogous to a gauge symmetry. The phenomenon resem-
bles the occurrence of null vectors in the case of Virasoro and Kac Moody
representations and there indeed is a deep connection between quantum
groups and Kac-Moody algebras [19].

One can wonder what is the precise relationship between Uq(sl(2) and
SLq(2) which both are quantum groups using loose terminology. The re-
lationship is duality. This means the existence of a morphism x → Ψ(x)
Mq(2) → U?

q defined by a bilinear form 〈u, x〉 = Ψ(x)(u) on Uq × Mq(2),
which is bi-algebra morphism. This means that the conditions

〈uv, x〉 = 〈u⊗ v, ∆(x)〉 , 〈u, xy〉 = 〈∆(u), x⊗ y〉 ,

〈1, x〉 = ε(x) , 〈u, 1〉 = ε(u)

are satisfied. It is enough to find Ψ(x) for the generators x = A,B, C, D of
Mq(2) and show that the duality conditions are satisfied. The representation

ρ(E) =

(
0 1
0 0

)
, ρ(F ) =

(
0 0
1 0

)
, ρ(K = qH) =

(
q 0
0 q−1

)
,

extended to a representation

ρ(u) =

(
A(u) B(u)
C(u) D(u)

)

128



of arbitrary element u of Uq(sl(2) defines for elements in U?
q . It is easy to

guess that A(u), B(u), C(u), D(u), which can be regarded as elements of U?
q ,

can be regarded also as R points that is images of the generators a, b, c, d of
SLq(2) under an algebra morphism SLq(2) → U?

q .

9.3 General semisimple quantum group

The Drinfeld’s construction of quantum groups applies to arbitrary semi-
simple Lie algebra and is discussed in detail in [19]. The construction relies
on the use of Cartan matrix.

Quite generally, Cartan matrix A = {aij} is n× n matrix satisfying the
following conditions:

i) A is indecomposable, that is does not reduce to a direct sum of ma-
trices.

ii) aij ≤ 0 holds true for i < j.
iii) aij = 0 is equivalent with aij = 0.
A can be normalized so that the diagonal components satisfy aii = 2.
The generators ei, fi, ki satisfying the commutations relations

kikj = kjki , kiej = q
aij

i ejki ,

kifj = q
−aij

i ejki , eifj − fjei = δij
ki−k−1

i

qi−q−1
i

,
(108)

and so called Serre relations

∑1−aij

l=0 (−1)l

[
1− aij

l

]

qi

e
1−aij−l
i eje

l
i = 0, i 6= j ,

∑1−aij

l=0 (−1)l

[
1− aij

l

]

qi

f
1−aij−l
i fjf

l
i = 0 , i 6= j .

(109)

Here qi = qDi where one has Diaij = aijDi. Di = 1 is the simplest choice
in this case.

Comultiplication is given by

∆(ki) = ki ⊗ ki , (110)
∆(ei) = ei ⊗ ki + 1⊗ ei , (111)
∆(fi) = fi ⊗ 1 + k−1

i ⊗ 1 . (112)
(113)
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The action of antipode S is defined as

S(ei) = −eik
−1
i , S(fi) = −kifi , S(ki) = −k−1

i . (114)

9.4 Quantum affine algebras

The construction of Drinfeld and Jimbo generalizes also to the case of
untwisted affine Lie algebras, which are in one-one correspondence with
semisimple Lie algebras. The representations of quantum deformed affine
algebras define corresponding deformations of Kac-Moody algebras. In the
following only the basic formulas are summarized and the reader not famil-
iar with the formalism can consult a more detailed treatment can be found
in [19].

1. Affine algebras

The Cartan matrix A is said to be of affine type if the conditions det(A) =
0 and aijaji ≥ 4 (no summation) hold true. There always exists a diagonal
matrix D such that B = DA is symmetric and defines symmetric bilinear
degenerate metric on the affine Lie algebra.

The Dynkin diagrams of affine algebra of rank l have l + 1 vertices (so
that Cartan matrix has one null eigenvector). The diagrams of semisimple
Lie-algebras are sub-diagrams of affine algebras. From the (l + 1)× (l + 1)
Cartan matrix of an untwisted affine algebra Â one can recover the l × l
Cartan matrix of A by dropping away 0:th row and column.

For instance, the algebra A1
1, which is affine counterpart of SL(2), has

Cartan matrix aij

A =

(
2 −2
−2 2

)

with a vanishing determinant.
Quite generally, in untwisted case quantum algebra Uq(Ĝl) as 3(l + 1)

generators ei, fi, ki (i = 0, 1, .., l) satisfying the relations of Eq. 109 for
Cartan matrix of G(1). Affine quantum group is obtained by adding to
Uq(Ĝl) a derivation d satisfying the relations

[d, ei] = δi0ei , [d, fi] = δi0fi, [d, ki] = 0 . (115)

with comultiplication ∆(d) = d⊗ 1 + 1⊗ d.
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2. Kac Moody algebras

The undeformed extension Ĝl associated with the affine Cartan matrix
G(1)

l is the Kac Moody algebra associated with the group G obtained as the
central extension of the corresponding loop algebra. The loop algebra is
defined as

L(G) = G ⊗ C
[
t, t−1

]
, (116)

where C
[
t, t−1

]
is the algebra of Laurent polynomials with complex coeffi-

cients. The Lie bracket is

[x× P, y ⊗Q] = [x, y]⊗ PQ . (117)

The non-degenerate bilinear symmetric form (, ) in Gl induces corresponding
form in L(Gl) as (x⊗ P, y ⊗Q) = (x, y)PQ.

A two-cocycle on L(Gl) is defined as

Ψ(a, b) = Res(
da

dt
, b) , (118)

where the residue of a Laurent is defined as Res(
∑

n antn) = a−1. The
two-cocycle satisfies the conditions

Ψ(a, b) = −Ψ(b, a) ,

Ψ([a, b] , c) + Ψ([b, c] , a) + Ψ([c, a] , b) = 0 . (119)

The two-cocycle defines the central extension of loop algebra L(Gl) to Kac
Moody algebra L(Gl)⊗Cc, where c is a new central element commuting with
the loop algebra. The new bracket is defined as [, ] + Ψ(, )c. The algebra
L̃(Gl) is defined by adding the derivation d which acts as td/dt measuring
the conformal weight.

The standard basis for Kac Moody algebra and corresponding commu-
tation relations are given by

Jx
n = x⊗ tn ,

[Jx
n , Jy

m] = J
[x,y]
n+m + nδm+n,0c . (120)

131



The finite dimensional irreducible representations of G defined represen-
tations of Kac Moody algebra with a vanishing central extension c = 0. The
highest weight representations are characterized by highest weight vector |v〉
such that

Jx
n |v〉 = 0, n > 0 ,

c|v〉 = k|v〉 . (121)

3. Quantum affine algebras

Drinfeld has constructed the quantum affine extension Uq(Gl) using quan-
tum double construction. The construction of generators uses almost the
same basic formulas as the construction of semi-simple algebras. The con-
struction involves the automorphism Dt : Uq(G̃l) ⊗ C

[
t, t−1

] → Uq(G̃l) ⊗
C

[
t, t−1

]
given by

Dt(ei) = tδi0ei , Dt(fi) = tδi0fi ,
Dt(ki) = ki Dt(d) = d ,

(122)

and the co-product

∆t(a) = (Dt ⊗ 1)∆(a) , ∆op
t (a) = (Dt ⊗ 1)∆op(a) , (123)

where the ∆(a) is the co-product defined by the same general formula as
applying in the case of semi-simple Lie algebras. The universal R-matrix is
given by

R(t) = (Dt ⊗ 1)R , (124)

and satisfies the equations

R(t)∆t(a) = ∆op
t (a)R ,

(∆z ⊗ id)R(u) = R13(zu)R23(u) ,

(id⊗∆u)R(zu) = R13(z)R12(zu) ,

R12(t)R13(tw)R23(w) = R23(w)R13(tw)R12(t) .

(125)
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The infinite-dimensional representations of affine algebra give representa-
tions of Kac-Moody algebra when one restricts the consideration to genera-
tions ei, fi, ki, i > 0.

10 Appendix B: Riemann Zeta and propagators

One might hope that TGD possesses a well-defined and divergence free quan-
tum field theory limit. The preceding considerations suggest a manner to
get rid of the divergences of quantum field theories. Super-canonical confor-
mal weights, or more generally, zeros of Riemann Zeta, should leave a trace
in quantum field theory and this trace must be essential for the cancellation
of infinities. In the sequel an attempt to understand how the zeros of Zeta
might be visible at single particle level is made. This attempt should be
taken as a mere mathematical experimentation having rather ad hoc char-
acter and it does not represent the main bulk of TGD.

10.1 General model for a scalar propagator

10.1.1 Is the p-adic length scale evolution of propagators univer-
sal and determined by the zeros of zeta

The quantum field theory model for polyzetas [22] gives some hints about
what generalized Feynman diagrams could be.

1. In the 1-dimensional quantum field theory model for polyzetas dis-
cussed in [22] the propagator factors correspond to all possible inte-
ger powers Gk of a propagator G defined as inverse of the derivative
operator D = d/dt. The resulting diagrams give results which are
proportional to polyzetas. The integer k is completely analogous to a
conformal weight. For a single loop approximation of the scalar field
theory only the power D2 would appear as a propagator and this would
give only polyzetas with even weight.

2. The work of Kreimer and Broadhurst [23] leads to the conclusion that
one can assign to each vacuum Feynman diagram a closure of a unique
braid with chords connecting the strands of the braid: this is nothing
but the TGD counterpart of vacuum diagram defined in terms of a
braid with chords representing propagators. Probably this correspon-
dence holds for non-vacuum diagrams also. These braids give rise to
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combinations of polyzetas such that the number n of strands corre-
sponds to the depth m = n + 1 of the polyzeta and the number of
crossings equals to the weight k =

∑
i ki of the polyzeta.

3. The polyzeta associated with the Feynman diagram vanishes if the
allowed conformal weights ki satisfying

∑
ki = k are not positive in-

tegers but correspond to the zeros of polyzeta in question. Hence the
replacement of the integers ki identified as conformal weights with the
zeros of the polyzeta in question gives hopes that one could understand
the p-adic length scale evolution of the propagator and the cancella-
tion of loop corrections. The physical interpretation for the modified
conformal weights would as ”bound state conformal weights”, and the
necessity to use them would be something which field theory alone can-
not explain. The form of the propagator to be discussed is completely
universal and applies also to stringy diagrams when one replaces prop-
agator with the Super Kac-Moody conformal scaling generator L0.

10.1.2 Various models for scalar propagator

The first thing that comes in mind is to construct a model for the scalar
field propagator based based on zeros of ζ. The are several options.

Option I: This model is inspired by the quantum field theoretical model
for polyzetas [22]. Scalar field propagator is regarded as a kind of partition
function in an ensemble whose states are labelled by spectrum of super-
canonical weights expressible in terms of zeros of Zeta. This assumption is
admittedly somewhat adhoc. A sum over both the non-trivial and trivial
zeros is needed and trivial zeros give the usual free propagator contribution.
The details of this option are left to Appendix B.

Option II: The inspiration comes now from the formula
∫∞
0 exp(i(p2 −

m2 − iε)t)dt for the scalar propagator. The integral is replaced with a dis-
crete sum over allowed values of t > 0 which on basis of number theoretical
considerations are argued to correspond to linear combinations for the imag-
inary parts of non-trivial zeros of Zeta with coefficients which are positive
integers to guarantee t > 0.

Option III: This model is inspired by the observation that the defining
integral can be transformed to an integral over positive imaginary axis in
t-plane and one can wonder whether it could be replaced with a sum over the
trivial zeros of Zeta. This would give a rather realistic looking propagator.

Option IV: One can criticize the notion of the momentum space scalar
propagator as being a too phenomenological concept to allow the application
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of notions of super-canonical invariance and quantum criticality.

1. In TGD the usual momentum space propagators can have only a phe-
nomenological role since 4-momentum does not flow in the lines of the
generalized Feynman diagrams. The counterpart of the propagator
originates from the unitary evolution for the induced spinor fields at
3-D light-like causal determinants representing orbits of 2-D partons
along which generalized eigen modes of the modified Dirac operator
propagate. Momentum squared as the argument of the propagator is
replaced by the square of the eigen value of the modified Dirac operator
D.

2. There are reasons to suspect [C7] that the unitary evolution associ-
ated with the lines of generalized Feynman diagrams corresponds to
the unitary evolution operator ∆it determined by the positive Hermi-
tian ”Hamiltonian” operator ∆ inherent for von Neumann algebras.
Positivity suggests that ∆ corresponds to the square D2 of the modi-
fied Dirac operator. Conformal invariance would in turn suggest that
the eigenvalues of ∆ and possibly also D2 might relate in a simple
manner to the positive integer valued spectrum of Virasoro generator
L0. In this case the propagator would result through a summation
over the number theoretically allowed discrete values of t as for option
II. The propagator reduces to a function which can be regarded as a
dual of Riemann Zeta.

10.1.3 General conditions on scalar propagator

Consider as an example a scalar field theory with the momentum space
inverse propagator D = p2 −m2.

1. Introduce a mass scale λ playing the role of an ultraviolet cutoff and
replace the inverse propagator D0 ≡ λ−2D with a conformal weight
k = −2 with the sum of propagators with conformal weights z which
correspond to the zeros of ζ. In the quantum field theory context the
parameter λ would be an ad hoc parameter but in TGD framework its
values naturally corresponds to the inverses of p-adic length scales so
that one would have entire hierarchy of propagators with λ ∝ 1/

√
p, p

prime and discretized renormalization group evolution.

2. In the standard renormalization theory one poses the conditions
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G−1
R (p2 = m2) = 0 ,

dG−1
R

dp2 (p2 = m2) = 1 . (126)

These conditions are posed also now. In the standard renormalization
theory the propagator has a cut along real axis above p2 = m2 and the
cut is due to the logarithmic terms log[(p2−m2)/λ2] whose imaginary
part is discontinuous. One might expect this behavior also now.

For options II and III the definition of scalar propagator is unique. Con-
cerning the precise definition of the propagator for option I, one can consider
several options.

1. The Cartan decomposition g = h + t of the super-canonical algebra
discussed in [B2] determines the conformal weights in question and
they correspond to the conformal weights of t. This option has a good
theoretical justification since the generators of t indeed corresponding
to non-gauge degrees of freedom. In this case also conformal weights
of form z = n − 1/2 − ∑

i yi, where yi are imaginary parts of the
non-trivial zeros of Riemann zeta must be included. The resulting
propagator has an interpretation as a propagator with ultraviolet cut-
off. The restriction n = 0, 1 emerges from the requirement that the
propagator is non-singular on mass shell. This option is implied also
by the requirement that Virasoro generators Ln, n ≥ 1, act as gauge
symmetries in the super-canonical algebra.

2. One can also consider the restriction to the conformal sub-algebra
of the super-canonical algebra so that only the linear combinations∑

n(y)y, n(y) > 0, are involved.

3. The minimal option is that only the conformal weights corresponding
to the zeros of Riemann Zeta contribute to the scalar propagator.

The character of the non-trivial zeros of Riemann Zeta is of crucial phys-
ical significance.

1. The assumption that the imaginary parts of the zeros are linearly inde-
pendent is attractive from the calculational point of view. It however
turns that the resulting propagator has either delta function like poles
or infinitely narrow resonance poles ro real mass mass squared values
and this is not a physically realistic result although it could be a good
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approximation. Furthermore the propagator is totally ill defined at
the limit when all zeros of Zeta contribute since the singularities are
dense on real axis.

2. The distribution of the zeros of Zeta favors strongly the option for
which zeros are not linearly independent and that the phases piy for
each prime p correspond to sums of subset of angles of Pythagorean
prime phases ΦP defined by the squares of Gaussian primes and a
fixed set of rational fractions m2π. This implies that the generating
super-canonical conformal weights are not linearly independent. With
this assumption the singularities of the propagator are not anymore at
real values of mass squared and the propagator is well-defined also at
the limit when all zeros of Zeta contribute to it.

In the following calculations the assumption that yi are linearly indepen-
dent is made although this assumption is probably wrong. The motivation
is that it allows to understand the behavior of the propagator approximately
and see why the linear independence implied by the ansatz inspired by the
properties of the spectral function of Riemann zeros is physically highly
desirable.

The hypothesis that piy can be expressed in terms of Pythagorean prime
phase angle and rational multiple of 2π for any prime, if true, is bound to be
a very powerful number theoretic symmetry. In particular, it gives infinite
number of representations of the scalar field propagator, one for each prime.
In the sequel this aspect is not discussed at all.

10.1.4 Propagators for various options

1. Scalar field propagator for option II

In this case the expression for scalar field propagator is easy to derive
if linear independence of yi is assumed. The expression for the propagator
reads as

G =
∑

ni>0

ui
∑

i
niyi , (127)

u = exp(
p2 −m2

λ2
) . (128)

Here the sum over the combinations of zeros with positive integer valued
coefficients is assumed. One could assume that only the condition

∑
niyi > 0
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holds true. The restriction is consistent with the hypothesis about the p-
adic existence of basic building blocks at zeros of Riemann Zeta if exp((p2−
m2)/λ2) is restricted to be rational.

Performing the sums, one obtains

G(p) =
∏

i

1
1− uiyi

,

u = exp(
p2 −m2 + iε

λ2
) . (129)

This expression can be regarded as a dual of Riemann Zeta in the sense
that the product over partition functions associated with primes is replaced
with the product over partition functions labelled by non-trivial zeros. The
terms of product approach to unity with exponential rate for ε > 0 so that
the product converges.

The propagator has poles at

p2 = m2 + kλ2 2π

yi
, k ∈ Z . (130)

k = 0 corresponds to p2 = m2 so that scalar propagator pole is obtained.
The mass formula is stringy mass formula with string tension proportional
to 1/yi.

If u corresponds stringy propagator Ltot
0 = (p2−L0)/λ2 instead of scalar

propagator one obtains modification of the stringy mass formula

m2 = (n + k
2π

yi
)λ2 , k ∈ Z . (131)

If all non-trivial zeros of ζ are allowed, the poles are dense in the entire
m2-axis so that also tachyons are obtained. One can consider several cures
the problem.

1. Assuming that the basic building blocks of Riemann Zeta exist p-
adically for its zeros, the poles with k > 0 do not correspond to rational
values of u so that the poles other than p2 = m2 (p2 = nλ2 in the
stringy case) are not at all visible if the theory is required to satisfy
p-adicizability constraint.
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2. A natural hierarchy of cutoffs is provided by the subalgebras of super-
canonical algebra defined by y-cutoff. In this case poles are not dense
anymore but tachyons remain.

3. If yi are not linearly independent, it is not possible to sum freely over
integers ni and poles are smoothed out and are expected to develop
imaginary parts. If the condition ni > 0 is replaced with the weaker
condition

∑
i niyi > 0 more correlates between yi emerge and further

smoothing out of poles is expected to happen.

2. Scalar field propagator for option III

In this case the propagator is given by as sum over trivial zeros of ζ at
z = −2n.

G(u) = iu2/(1− u2) = i
exp(2(p2−m2)

λ2 )

1− exp(2(p2−m2)
λ2 )

. (132)

The pole at p2 = m2 is not shifted and for large values of p2 > 0 the propa-
gator approaches −1 and vanishes exponentially for space-like momenta.

3. Scalar propagator for option I

There are several alternatives concerning definition of the scalar prop-
agator as a partition function. These are discussed in detail in Appendix
B. What makes this option questionable is that the pole at m2 is shifted to
m2 + λ2. This would require that massless particles result from tachyons.
The other problems and possible cures are same as those for option II. One
can say that the number theoretic discretization of the integral formula for
propagator is favored over the partition function based model.

4. Propagator for option IV

In this case the interpretation as momentum space propagator is given
up. The general expression of propagator is same as for option II: only the
argument u = exp((p2 −m2)/λ2) is replaced by a new one. A good guess is
that u corresponds to the squares for the eigenvalues of the modified Dirac
operator required to be rational by p-adicization. An alternative guess is
that u corresponds to the non-negative integer valued spectrum of Virasoro
generator L0.

If yi are linearly independent and ni > 0 condition is assumed one obtains
poles also now but they do not correspond rational values of u. The values
of poles would be given by
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uk,yi = exp(
2πk

yi
) . (133)

Rationality requirement, the linear independence of yi, the weakened con-
dition

∑
i niyi > 0, and already the fact that the spectrum of D2 is pre-

determined, excludes poles. It seems that option III favored also by the
general physical picture is the only realistic one.

In the following various options for scalar field propagator defined as a
partition function are studied in detail.

10.2 Scalar field propagator for option I

In the following various options for scalar field propagator defined as a par-
tition function are studied in detail for option I.

10.2.1 Propagator assuming all conformal weights predicted by
super-canonical algebra

The super-canonical algebra defining the algebra of isometries of configu-
ration space has conformal weights expressible in terms of both trivial and
non-trivial zeros of Riemann Zeta and this leads to the idea that scalar field
propagator could be regarded as a partition function in super-canonical al-
gebra. The construction turned out to be extremely useful by providing the
physical input making it easier to grasp the structure of the super-canonical
algebra. In the following the assumption that yi are linearly independent is
made in the hope that it is a good approximation although the facts about
the spectral function favor the ansatz predicting linear dependence.

1. Scalar propagator as a partition function for Cartan decomposition of
the super-canonical algebra

The idea is to construct propagator as a partition function for the super-
canonical algebra and require that it is faithful to the Cartan decomposition
of the algebra defining configuration space of 3-surfaces as a symmetric
space. As shown in [B2], the super-canonical algebra decomposes to two
parts g = gt + gnt corresponding to trivial and non-trivial zeros of Zeta.

1. The Cartan decomposition g = t + h, [t, t] ⊂ h, [h, h] ⊂ h, [t, h] ⊂ t
means that only the generators of t correspond to physical degrees of
freedom because of coset space-structure meaning that h corresponds
to gauge degrees of freedom. Thus only the conformal weights of t
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contribute to the partition function defining the propagator. The con-
formal weights associated with tn are ht = 2n whereas the conformal
weights associated with tnt are

hnt,1 = 2n− 1
2 − i

∑
yi>0 niyi ,

∑
i ni = 2N + 1 , n > 0 ,

hnt,2 = 2n + 1
2 − i

∑
yi>0 niyi ,

∑
i ni = 2N , n > 0 .

(134)

The sub-spaces defined by n = 0 defined together with trivial zeros an
orthogonal basis. It is however unclear whether n > 0 states can satisfy
the orthogonality conditions and whether they should be excluded as
states generated by Virasoro generators L2n, n > 0.

2. The propagator is defined as a partition function

GR

λ2
=

∑

z∈t

uf(z) ,

u =
p2 −m2

λ2
, (135)

where f(z) is a linear function of the conformal weight z = ht, httn.

3. Propagator can be expressed as a sum of three parts

GR

λ2
= GR,1 + GR,2 + GR,3

= ε1
∑

z=−2n

G
f(z)
0 + ε2

∑

z=hnt,1

G
f(z)
0 + ε3

∑

z=hnt,2

G
f(z)
0 .(136)

The sign factors must be chosen in such a manner that the resulting
expression for the propagator is physically acceptable. The sign factor
should define a Lie algebra homomorphism: ε([A,B]) = ε(A)εB. For
the choice ε1 = ε3 = 1, ε2 = ±1 this condition is satisfied. In the
following ε = ε3 = 1 is assumed and the value of ε2 is left free: it turns
out that ε2 = −1 is the only possible consistent choice if one allows all
values of n for conformal weights hnt. If only n = 0, 1 is allowed then
ε2 = 1 is possible.
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4. The requirement that 1/(p2−m2) behavior results as the lowest order
contribution from GR,1, implies f(z) = −z/2, and one has

GR,1

λ2
=

∑

n>0

Gn
0 ,

GR,2

λ2
= ε2

∑
n

G
2n−1/2
0 ×

∑
∑

n(y)y

G
[−i

∑
n(y)y]/2

0 |
∑

y
n(y) odd ,

GR,3

λ2
=

∑
n

G
2n+1/2
0 ×

∑
∑

n(y)y

G
[−i

∑
n(y)y]/2

0 |
∑

y
n(y) even .(137)

Here
∑

n(y)y appearing as summation index can be regarded a formal
superposition over imaginary parts of arbitrary subset of non-trivial
zeros of Zeta (note that the linear independence over zeros is an es-
sential although probably only approximate assumption).

Consider the expressions for the various parts of the propagator.

1. The expression for GR,1 reads as

GR,1 =
1

p2 −m2 − λ2
. (138)

The pole is shifted unless m2(λ) depends on λ as m2 = m2
0 − λ2.

2. The expressions for GR,2 and GR,3 are sums of terms proportional to
sums

∑
∑

i
n(yi)yi

exp

[
−ilog(u)

∑

i

n(yi)yi/2

]

where n(y) is odd or even. For u > 0 the conditions guaranteing the
vanishing of these sums can be derived by assuming that the imaginary
parts y of the zeros of Riemann Zeta are linearly independent do not
satisfy any identify of form

∑

i

niyi = 0 , ni ∈ Z ,
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so that they generate an Abelian group with an infinite number of
generators defined by y. With this assumption the sum over each y
gives a delta function δ(log(u)− 4πk/y), and if the exponent contains
more than one yi, the result is zero. The sums give delta functions
allowing p2 to have only discrete values

p2 = m2
y,k = m2 + λ2 × e

2πk
y , k ∈ Z , y > 0 . (139)

The expressions for GR,2 and GR,3 are

GR,2

λ2
= ε2

∑

k,y>0

δ(u− uk,y)(−1)ku
−1/4
k,y fi(uk,y) ,

GR,3

λ2
=

∑

k,y>0

δ(u− uk,y)u
1/4
k,y fi(uk,y) ,

uk,y =
m2

k,y −m2

λ2
= e

2πk
yi . (140)

The function fi(uk,y), i = 1, 2 results from the summation over pow-
ers un, and i = 1, 2 labels n = 0, 1 and n = 0, 1, ... options for the
conformal weights hnt. One has

f1(uk,y) = 1 + u(k, y) ,

f2(uk,y) =
1

1− u(k, y)
. (141)

Except for the dependence coming from the delta functions expressing
the fact that resonances masses scale as λ2, these parts of propagator
are independent of λ.

3. The overall expression for the propagator in the region p2 −m2 ≥ 0
reads as

GR

λ2
=

1
p2 −m2 − λ2

+
∑

k,y>0

δ(p2 −m2
k,y)

[
u

1/4
k,y + ε2(−1)ku

−1/4
k

]
fi(uk,y) .

(142)
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4. The guess that the propagator in the space-like region p2 − m2 <
0 is obtained by an analytical continuation turns out to be correct.
The explicit summation gives zero always irrespective of the value of
whether u is positive or negative unless the resonance conditions are
satisfied. This means that resonance contributions vanish for p2−m2 <
0, that is for p2 < m2

0 − λ2 for m2 = m2
0 − λ2 option implied by

renormalization group invariance.

2. Pole and resonance structure of the propagator

The pole of the propagator is shifted to m2+λ2 and renormalization con-
ditions are satisfied at p2 = m2 + λ2. The renormalization group invariance
condition applied on mass shell gives λdGR/dλ = 0. Only GR,1 contributes
to the condition for on mass shell and one has

m2(λ) = m2
0 − λ2 . (143)

Obviously m2 = m2
0 becomes renormalization group invariant.

The propagator is thus a sum of free propagator with additional delta-
function contributions at p2 = m2

yi,k
for k 6= 0,. There appears no pole

(that is propagating physical particle) at these masses because one has [p2−
m2

yi,k
]δ(p2 −m2

yi,k
) = 0.

Consider now the choice of the parameter ε2 and the choice between n =
0, 1 and n < 0 options corresponding to f1(u) = 1+u and f2(u) = 1/(1−u).

1. For n = 0, 1 option corresponding to f1(u) = 1+u no pole is generated
for k = 0 and ε2 = 1 is possible. The choice ε2 = −1 however cancels
the resonance at p2 = m2

0 corresponding to k = 0. This is highly desir-
able since at the limit when all zeros of Zeta are allowed the resonance
strength of this resonance becomes infinite. The result conforms with
the view that the generators Ln, n ≥ 1, indeed generate zeros states.

2. For n > 0 option corresponding the situation is more delicate assuming
that the condition m2(λ2) = m2

0 − λ2 is satisfied. The factor

[
u

1/4
k,y + ε2(−1)ku

−1/4
k,y

]

1− uk,y
=

e
πk
2y + ε2(−1)ke

−πk
2y

1− e
2πk

y

would have a pole for ε2 = 1 because of vanishing of the denominator
1− uk=0,y and the residue of the propagator would be infinite at p2 =
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m2 rather than being equal to 1. Thus the only possible choice is
ε2 = −1 in this case. One has however still the problem with the
infinite value of the resonance strength when all zeros of Zeta are
included.

One can say that the virtual mass squared possesses a discrete res-
onance spectrum superposed to the free propagation. The interpre-
tation as a kind of fractal noise might make sense. The propagator
contains the resonance contributions also in the space-like region for
p2 −m2 = m2

0 − λ2 < 0.

The mass spectrum for the resonances can be written as

m2
k,y = m2

0 + λ2
[
e

2πk
y − 1

]
, (144)

and depends on λ. The spectrum contains both s-channel resonances
corresponding to k > 0 and tachyonic exchange resonances correspond-
ing to k < 0. The symmetry between the two spectra brings in mind
string model duality. For tree diagrams the mass quantization of ex-
changed resonances would mean that discretization occurs in the mo-
mentum space for resonances. For instance, in the scattering of two
particles in cm frame the space-like resonances appear at discrete val-
ues of the scattering angle θ as a kind of a fractal rainbow effect. The
couplings to the resonances are reduced exponentially at the time-
like limit k → ∞ and increase exponentially at the space-like limit
k → −∞ (m2 → m2

0 − λ2).

The inverse D = 1/G of the propagator does not make sense at the
momenta corresponding to the resonances. The reason is that the
geometric series expansion of

G−1
R =

1
GR,3[1 + G−1

R,3(GR,1 + GR,2)]

involves ill-defined powers of delta functions δ(p2 −m2
k,yi

). The inter-
pretation is that the propagator does not allow a non-singular field
theory limit.

3. Why a cutoff in the number of non-trivial zeros of Riemanm Zeta is
necessary?
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Any subset {y > 0} of non-trivial zeros of Riemann Zeta defines a sub-
algebra of the super-canonical algebra. This suggests a hierarchy of sub-
algebras defined by the set Yn = {y1, ..., yn} of n lowest zeros defining a
hierarchy of propagators containing only sum over conformal weights of a
sub-algebra of super-canonical algebra. The restriction to sub-algebra de-
fined by Yn could be interpreted as a cutoff in y-space. This cutoff would
not be a mere calculational trick but would represent infinite hierarchy of
”phases” with a finite y-cutoff meaning increasing density of points in the
lattice defined by the set Yn. One could even think that the full super-
canonical algebra as well as propagators, vertices and S-matrices are defined
by a nested hierarchy of sub-algebras defined by the subsets Yn ⊂ Yn+1.

There are several reasons making this kind of cutoff necessary.

1. Without the cutoff the number of resonances in a mass squared interval
[m2, m2 + ∆m2] is infinite. The condition for the resonances can be
written as

m2 −m2
0

λ2
+ 1 = exp

[
2πk

y

]
.

For sufficiently large values of y one can always find at least one
k(y) such that the resulting mass squared is contained in the inter-
val [m2,m2 +∆m2]. Without the y-cutoff rates for the scattering with
final state momenta restricted in a finite volume elements of the phase
space would be infinite. The situation changes for rational cutoff since
the resonances turn out to correspond to the values of u which are
not rational or do not even belong to a finite-dimensional extension of
rationals. In this case the delta singularities disappear.

2. The p-adicization of the theory requires y-cutoff. Consider p-adicization
in a given p-adic number field Rp. Suppose that the values of u =
(p2 − m2)/λ2 appearing in the propagator are rational. The p-adic
existence of the phase factors uiy is required by the definition of the
partition function as a function making sense also p-adically. If ratio-
nals containing primes smaller than some cutoff prime pc are allowed,
this condition boils down to the existence of the phases qiy, q ≤ pc

prime, as a number in a finite-dimensional extension of the p-adic
number field Rp.

Suppose that the phase factors qiy, q prime belong to a finite-dimensional
algebraic extension of any p-adic number field Rp for any prime q and
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any non-trivial zero z = 1/2+y of Zeta. This is achieved if the phases
piyi are expressible as products of roots of unity and Pythagorean
phases:

piy = eiφP (p,y) × eiφ(p,y) ,

eiφP (p,y) =
r2 − s2 + i2rs

r2 + s2
, r = r(p, y) , s = s(p, y) ,

eiφ(p,y) = ei 2πm
n , m = m(p, y) , n = n(p, y) . (145)

The Pythagorean phases associated with two different zeros of zeta
must be different in order to have linear independence yi over integers.
Of course, linear independence is just a working hypothesis to be tested
and it will be found that there is support for the view that linear
independence leads to non-physical results and is not favored by the
facts known from the distribution of zeros of Zeta. Pythagorean phases
form a multiplicative group having the phases of squares of Gaussian
primes as its generators. The squares of Gaussian primes are primes
p mod 4 = 1.

One can decompose for any p any zero yi into two parts yi = yia + yiP

such that one has

log(p)yia(p) =
m2π

n
, log(p)yiP = arctan

[
2rs

r2 + s2

]
, (146)

where m,n, r, s of course depend on y and p. The decomposition is
unique if one requires m < n.

3. The exponents exp(πk/2y) appearing in the formula for the propagator
can be expressed as

e
πk
2y = q

k
2[log(p)y1(p)+yP (p)] . (147)

Due to the presence of yP these numbers are not rational nor even
algebraic unless additional conditions are posed. Scalar propagator
would reduce to a free propagator for rational values of u propagator
and the p-adicization of the propagator would always give just the free
propagator.
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4. The propagator could be formally interpreted as a partition function
with the conformal weights of t being in the role of energy spectrum
and 2log(u) in the role of the inverse temperature. In the real context
physical high energy limit corresponds to a formal low temperature
limit. The p-adic length scale hierarchy with decreasing p-adic length
scales and increasing value of λ presumably corresponds to a series of
phase transitions increasing λ and the temperature in a discontinuous
manner occur unless one can achieve overcooling. p-Adically the in-
crease of the upper bound for u means that the set of rational values
of u increases in size. This means the increase of pc and thus also of
the p-adic prime p.

5. The propagator has several non-physical features. The reduction to
single particle sector in the sense that all contributions involving sums
of at least two different zeros y vanish, is definitely a pathological fea-
ture. The presence of delta function singularities for real mass squared
values is a second un-physical feature. The limit when all zeros con-
tribute to the propagator gives real propagator for which delta function
singularities fill the real axis. The reduction to a free propagator in
p-adic context for all rational cutoffs is a further questionable feature.
All these features follow from the assumption that the zeros are linearly
independent. The actual linear dependence implied by the ansatz ex-
plaining the correlations between zeros implies that this approximation
leads to multiple counting of some super-canonical weights and there
are good hopes that the singularities are due to this over counting.

10.2.2 Propagator as a partition function associated with the
holomorphic sub-algebra of the super-canonical algebra

The interpretation of the conformal weights of super-canonical algebra as
punctures of complex plane at which Super Kac-Moody conformal Virasoro
algebra acts as conformal transformations encourages to consider also the
subalgebra generated by allowing only the generators with conformal weights
z = −1/2 − iy, y > 0 and z = n, n > 0. In this case the sums appearing
in the definition of the propagator as a partition function would be only
over sums

∑
n(y)n(y)y involving only positive values of y and one would

have N > 0 and n(y) ≥ 0 in the sums of Eq. 137. Also now the working
hypothesis is that yi are linearly independent.

The outcome is the following general formula
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GR,2

λ2
= ε2u

−1/4fi(u)×
∑

N≥0

∑
∑

n(y)y

X
[∑

n(y)y|2N + 1
]

,

GR,3

λ2
= u1/4fi(u)×

∑

N≥1

∑
∑

n(y)y

X
[∑

n(y)y|2N
]

,

X
[∑

n(y)y|M
]

= u[−i
∑

n(y)y]/2 ,
∑

n(y) = M. (148)

Here
∑

y n(y)y refers to formal sum of non-trivial zeros of Zeta with n(y) > 0.
The terms in the sum can be arranged according to how many different zeros
contribute to the sum

∑
n(y)y, denote this number by K. The sum can be

decomposed to a sum over all possible different subsets UK = {yi1 , ..., yiK}
of non-trivial zeros of Zeta. Hence one can write

GR,2

λ2
= ε2u

−1/4fi(u)×
∑

K≥1

∑

UK

∑

N≥K−1

∑
∑

nk=2N+1

e−i
∑K

k=1
nkyik

log(u) ,

GR,3

λ2
= u1/4fi(u)×

∑

K≥1

∑

UK

∑

N≥K−1

∑
∑

nk=2N

e−i
∑K

k=1
nkyik

log(u) . (149)

Here nk ≥ 1 holds true for every yik . The evaluation of the sums in terms of
geometric sums is in principle straightforward for arbitrary value of K but
the expressions get complicated as K increases.

Apart from factors u±1/4fi(u), GR,2 resp. GR,3 could be interpreted
as a partition function for a system consisting of harmonic oscillators with
fundamental frequencies yi with the restriction that the total number of
quanta is odd resp. even for the allowed states.

This modification alters dramatically the structure of the propagator.

1. Terms involving sums
∑

k nkyik in the exponent contribute to the prop-
agator and the outcome is terms depending on arbitrary many different
y:s instead of only single particle terms as in the previous case.

2. Single particle contributions are transformed from resonances to gen-
uine poles. For instance, in GR,2 the sum

∑

n(y)∈Z

eilog(u)(2ny+1)/2
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giving single particle contribution is replaced with the sum

∑

n(y)≥0

eilog(u)(2n(y)+1)/2 =
eilog(u)y/2

1− eilog(u)y
.

The delta functions at u = exp(k2π/y) transform to poles. This pre-
dicts infinite number of particles.

n = 0, 1 option with ε2 = −1 seems to be the only sensible choice
since in this case there is no singularity at p2 = m2

0. This option
guarantees the vanishing of GR,2 + GR,3 at u = 1 quite generally.
For other options the pole contribution at u = 1 (p2 = m2

0) is present,
and implies that the propagator normalization is changed and without
y-cutoff the residue of the propagator at p2 = m2

0 is infinite.

Tachyons result unless the condition

m2
0 > λ2

holds true so that λ2 would play the role of infrared- rather than ultra-
violet cutoff. This raises the possibility that the restriction to holomor-
phic sub-algebra makes sense for infrared cutoff whereas full algebra
would make sense for ultraviolet cutoff. Ultraviolet cutoff means finite
time resolution τ ∼ 1/

√
λ and the interpretation would be that the

lifetimes of resonances are shorter than τ . Ultraviolet cutoff would also
mean that multiple y states are not seen at all in the spectrum. By
previous arguments delta function type singularities disappear com-
pletely form the p-adicized theory whereas poles are visible but for
rational values of u they do not produce diverging S-matrix elements.

3. Two-particle contributions read as

1
eiy2x − eiy1x

×
[

ei4y2x

1− ei2y2x
− ei4y1x

1− ei2y1x

]
, x = log(u) .

Besides new poles poles at u = ekπ/yi there are also poles at u =
ek2π/(y1−y2).

4. The study of three-particle contributions suggests that the term con-
taining K different y:s gives rise to poles at u = ek2π/x, for x = 2yi

and x = yij = yi − yj and xi 6= j 6= k = yij + ykj , etc.
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5. In order to not fill the entire phase space densely with propagator
poles one must assume a hierarchy of y-cutoffs. The most general
hierarchy is obtained by restricting the consideration to a set of finitely
generated subalgebras defined by the sets UK , K < Kmax. In this
case the convergence is not guaranteed, in particular in p-adic context
there could be problems since infinite number of terms are present.
Number-theoretical considerations suggest a simpler filtered hierarchy
of subalgebras defined by the sets {y1, ...yK}.

6. Also this propagator has non-physical features. The presence of singu-
larities are real values of mass squared is physically unrealistic feature
since resonance widths are infinitely narrow in this kind of situation.
The propagator is ill-define at the limit when all zeros contribute to
it. These features are solely due to the assumed linear independence
of yi.

10.2.3 Propagator assuming that only zeros of ζ contribute to
the spectrum of conformal weights

Without any idea about the structure of the super-canonical algebra the
most probable guess would be that the partition function defining the scalar
propagator contains only the contribution of trivial and non-trivial zeros but
not the contributions corresponding to the commutators of these generators.
This option could be also defended by saying that the conformal weights
±1/2 +

∑
i niyi correspond in some sense to many particle states.

With this assumption the propagator would reduce to a sum of two terms
analogous to GR,1 and GR,2 in the general formula with the summations
restricted to n(y) = 1. The term corresponding to GR,3 would not be present
since GR,3 can involve only even values of

∑
n(y). This would lead to a

propagator with a resonance type on mass shell singularity. In the following
the option allowing n(y) = 2 at the line Re(h) = 1/2 is also considered since
it gives a non-singular propagator at p2 = m2

0.
From the general formula of Eq. 137 for the propagator one finds that

the expression for the propagator in this case reads as

GR =
1

p2 −m2 − λ2
+ ε2u

−1/4
∑

y>0

cos

[
ilog(u)

y

2

]
+ δ × u1/4

∑

y>0

cos [ilog(u)y] .

(150)

δ = 0 characterizes the strictly ”single particle” case n(y) = 1.
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The requirement of on mass shell renormalization group invariance im-
plies m2 = m2

0 − λ2. (δ = 1, ε2 = −1) option allows a propagator having
only a pole singularity at p2 = m2

0 and satisfying renormalization condi-
tions. For δ = 0 the additional resonance singularity is unavoidable but
renormalization conditions are still satisfied. The propagator reads as

GR =
1

p2 −m2
0

− (1 +
p2 −m2

0

λ2
)−1/4

∑

y>0

cos

[
ilog(1 +

p2 −m2
0

λ2
)
y

2

]

+ δ × (1 +
p2 −m2

0

λ2
)1/4

∑

y>0

cos

[
ilog(1 +

p2 −m2
0

λ2
)y

]
.

(151)

The powers of the logarithm imply a cut for p2 < m2
0 − λ2 whereas in the

region p2 > m2
0 − λ2 logarithm and 1/4th root have power series expansion.

It is not clear whether the sum over zeros converges or not in the general
case.

The sum over infinite number of phase factors uiy is problematic p-
adically.
i) The basic hypothesis is that the phase factors piy belong to finite-dimensional
extensions of p-adic numbers for all primes p and zeros of Zeta. This would
mean that the uiy exists for all rational values of u but the sum

∑
y uiy fails

to exist as an infinite sum of numbers possessing unit p-adic norm. y-cutoff
would be necessary.
ii) If y would exist in an extension of Rp, cosines exist provided the condi-
tions |log [

1 + (p2 −m2)/λ2
]
)y|p < 1 hold true. In the p-adic context the

logarithm exists for |(p2 −m2)/λ2|p < 1 and has the same p-adic norm as
(p2 −m2)/λ2. In 2-adic case also the condition |(p2 −m2)y/2λ2|2 < 1 must
be satisfied.

It is interesting to look what happens if one assumes that the hypothesis
explaining the correlations between the zeros holds true. In this case the
sum over zeros decomposes into a separate sum over Pythagorean phases yP

and over rational phases assumed to be same for each yP . One can write
the term

A ≡
∑

y>0

cos

[
ilog(1 +

p2 −m2
0

λ2
)
y

x

]
,

where one has either x = 1 or x = 2 as a real part of a product two sums:
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q = Re(X) ,

X =
∑

yP >0 exp
[
ilog(1 + p2−m2

0
λ2 ) ΦP

xlog(p)

]
×∑

q∈Q0
exp

[
ilog(1 + p2−m2

0
λ2 ) q2π

xlog(p)

]
.

The first sum is over phase angles associated with a subset of Pythagorean
prime phases (squares of Gaussian primes) and second over rational phase
angles. Note that the non-uniqueness due to the decomposition to Pythagorean
and algebraic phase angle does not affect the value of the X.

The conclusion is that the proposed form of the propagator is not favored
by neither physical nor number theoretic conditions.

10.2.4 Do primes and their inverses correspond to the zeros of
the propagators GR,...?

The previous considerations rely on the probably wrong working hypothesis
that the imaginary parts yi of the nontrivial zeros zi = 1/2 + yi, yi > 0, of
Riemann Zeta are linearly independent.

The scalar propagator is defined as a partition function in the super-
canonical algebra and one can decompose it into a sum of three parts with
GR,2 and GR,3 being directly related to the non-trivial zeros of ζ. Also
Riemann Zeta has an interpretation as a partition function. This raises
interesting questions. Could Riemann Zeta and the building blocks GR,2

and/or GR,3 or some closely related partition functions be somehow duals of
each other? Could Riemann Zeta be for ordinary primes what GR,2 and/or
GR,3 are to yi? What could be the counterpart of Riemann Zeta for the
primes zi = 1/2 + yi?

If the correspondences makes sense, GR or GR,2 and/or GR,3 should
vanish for u = p and u = 1/p in an analogy with the fact that 1/2±yi and its
conjugate are zeros of Zeta. This would predict the mass formula M2(p) =
m2

0 − λ2 + p±1λ2. It is interesting to look whether this hypothesis might
make sense in the approximation that the zeros are linearly independent.

1. In the case of the scalar propagator defined by all zeros of ζ the function
GR,2 +GR,3 has delta function peaks at transcendental values of u and
vanishes trivially for u = p±1. GR,1 has a pole for u = 1. This
propagator would have as its analog the rational Zeta function ζq =∑

q q−z, which is ill defined unless one poses cutoff by allowing only
primes p < pc. This cutoff would be analogous to the y-cutoff. One
can however define ζq by noticing that it can be formally written as
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ζ̂q =
1
N

∑

m>0,n>0

(m/n)−z =
1
N

ζ(z)ζ(−z) ,

where N is the number of all integers n. The expression results by
writing q = r/s = nr/ns and summing over all values of all positive
integers n and dividing by the number N of all integers. By an infinite
re-normalization one obtains a well-defined function ζq ≡ N × ζ̂q =
ζ(z)ζ(−z). Interestingly, the inverse of this function has poles at the
lines Re(z) = ±1/2 containing the super-canonical conformal weights.

2. The fact that Riemann Zeta is a partition function for the states la-
belled by integers suggests that the dual partition function should be
a partition function for the states corresponding to ”integers” defined
by Riemann Zeta and thus correspond to the ”holomorphic” partition
function. It is clear from the expressions of GR,2 and GR,3 that if
they vanish for u they vanish also for 1/u. Also now the transcen-
dental poles at u = pk2π/y are present as are also poles at u = pkπ/y:
these poles should become complex poles when the linear dependence
is taken into account. The points u = p could be zeros but it is diffi-
cult to prove this. Note however that GR,2 and GR,3 do not directly
correspond to ζ since only the sums of odd and even number of yi:s
are involved.
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